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THE STABILITY OF MOTION IN A PERIODIC CUBIC FORCE FIELD

Curtis Arthur Wagner, Ph.D.
. Department of Physics
University of Illinois, 1968

The object of this research has been to investigate numeri-
cally the possible existence of closed, invariant regions of -
stability for solutions of a particular nonlinear differential equa-
tion. The Illiac II computer at the University of Illinois has
been utilize& for an accurate study of the stability properties of
solutions of the "Cubic Equation”. This nonautonomous equation
has the form dZX/dt2 + p(t) x3 = 0, where p(t) is a periodic square-
‘wave function of time with magnitude P, and period 1. This equation
can be integrated piecewise in terms of Jacobian elliptic functions,
and hence is suitable for a high-speed )digital computer. Not
relying on numerical integration techniques allows us to perform
many highly accurate computations over thousands of periods of <.

For fixed values of P, and T we have studied the motions in
a global neighborhood of a particular solution with period 1ll7t
which has an elliptic fixed point on the X-axis. Initial explora-
tory calculations using numerical integration revealed a region
associated with fixed points of period 557 which apparently did

not allow any of its interior points to escape to infinity. This



discovery suggested that we make a more careful study of solutions
associated with the clusters of multiple points (fixed under multi-
ples of 117 periods) which surround the original elliptic fixed
point. The solutions with 227 and 4471 periods quickly carried
points to infinity. The solutions with 1171 and 337 periods pos=-
sessed characteristic oscillating hyperbolic invariant curves, whereas
the solutions with a 557 period did not. It was found that the
outer 33T oscillating invariant curves intersected the outgoing 117
oscillating invariant curves. However the inner 33T oscillating
invariant curves formed a tangled mesh of self-intersections. This
"enﬁanglement" effectively prevented them from intersecting the
551 hyperbolic invariant curves. Consequently points in the domain
of the 5571 solutions were ''stable",

The final results clearly show (to the 10"12 accuracy of the
Illiac II computer) the existence of a closed invariant region,
associated with fixed points of period 557, around the original
117 elliptic fixed_point. This region is bounded by the doubly-
periodic union of the non-oscillating hyperbolic invariant curves
associated with the 557 solutions. It is surrounded by a jumbled
global structure of oscillating and intersecting»hyperbolic invari-
ant curves belonging to mappings with lesser multiplicities. This
intersection property provides the escape mechanism for points
just outside the invariant region. Points initially inside the
invariant region always map inside that region, even after an
infinite number of répeated mappings of the phase-space. The

points belonging to this region are said to be stroboscopically stable.




If we scale our flat nearly-elliptical twist mappings up to
nearly-circular ones (by scaling po), then the conditions of Moser's
theorem on invariant curves for certain twist mappings apply. How-
ever they are not sufficient to locate the observed invariant region
accurately. (Testing Moser's conditions involves as much work as
actually searching for the non-oscillating invariant curves.) Thus
the best method at present for obtaining practical knowledge about
the precise location of invariant regions of stability is to use a.
digital computer. The most important features of our work should
be reproducible on less accurate computers, even utilizing standard
nuﬁerical integration techniques for.the equations of motion. Our
empirical methods would then afford some practical guidélines for
a quantitative global undérstanding of the absolute s;ability of

solutions of any.particular nonautonomous differential equation,
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I. INTRODUCTION

The stability of motion is a concept which is defined analogously to
the stability of equilibrium, with which we are all familiar. Just as
small displacements from an equilibrium position may result in a particle
moving permanently away from that position (which is then said to be one
of unstable equilibrium), so small initial displacements from a periodic

orbit can result in steady motion away from that orbit, and the initial

motion is termed unstable.,

The planetary orbits appear to be "stable’” since they have changed
very little over several thousands of years. However, astronomical evolu-
tion occurs over billions of years, and it would be nice to know how stable
the solar system is during such a time span. Evidence may be gained for
this problem by observing the stability properties of charged particle
trajectories in accelerators and magnetic bottles. These trajectories may
involve millions of orbit repetitions in relatively short times, so that
any instabilities will show up vividly. In fact ﬁhe elimination of plasﬁa
instabilities may help in controlling nuclear fusion, so that precise
knowledge of "long=-period" stability is vital. To attain this, we need

an adequate mathematical theory of stability of motion for dynamical

systems in general, and for stellar systems, accelerators, and stellera-

tors in particular.

In general, the dynamical equations are nonlinear, either explicitly
time-dependent (i.e. non-autonomous) or else time-independent. The solu-
tions of the equations may be found numerically, but then we have to examine
their totality in order to make conclusions about stability. General

treatises on the "stability of motion" (e.g. the survey by Sansone and
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Conti=' or Bellman=' , with references) list many different definitions of
“stability", depending partly on the approximations which are to be made.

We shall begin by briefly discussing first-order stability. Let us con-

sider a set of n coupled first-order equations of the motion

dxi/dt = FiCKj) for i, =1,2,...,n ¢D)

which possess periodic (closed) solutions of the form
= = 2
X, (t) = £,(tr) = £, (t+T) (2)
where T is the period of the motion, If we now look at some "nearby" solu-

tion whose n coordinates X;(t) at time t differ from Xi(t) by infinitesimal

perturbations 6Xi(t), we can write
1 =
X1(E) = X; (£) + 8K (£) . 3)

Since this is also a solution of equation (1) by definition, we can obtain

n variational equations for the Gxi(t) infinitesimals, namely

d - ¥
Ty 6Xi = Z =, axj i=1,2,...,n . (4)
, =1 k| .

These linear differential equations (with coefficients periodic in t)
will possess solutions for the 6xi of the form
n
) = ) ok my )
k=1 ’
where Mﬁk is an array of functions of period T, and oy are n constants known
as characteristic QXponents of the solution. 1If all the o are purely
imaginary, then the perturbations 5Xi(t) themselves will be periodic and

bounded. 1f, however, some of the o are real and positive, then the



bxi(t) will grow exponentially with time. Discussions of the exact methods
for determining the ak in general, as well as their implications, can be
found in Whittakeril or Mindrsky&'/° This variational approach, due to
Poincaréﬁ is a rather universal one, but is clearly only a firstwdrder
approximation to the effects of arbitraiz (finite) changes in all the
variables. Specific applications of these methods to the determination of

the first-order stability of solutions to the restricted three=body problemil

are found in the work of Shearingéj and Henonl/.
The limitations to the usefulness of this first-order theory are

apparent, As long as we consider solutions with only an infinitesimal

separation from the known periodic solution, we can definitely say (provided,
of course, that we can directly integrate the variational equations (4))
whether the nearby solution will grow in size with increasing time, or
whether it will femain infinitesimally "close™. But what about solutions
which are a finite distance from the periodic solution? Clearly the varia-
tional theory is onl& a local theory, whereas what we need is a global

study of solutions of the equations of motion.

A first step in this direction was made by Liapunov§/ near the end
of the nineteenth century. His so-called "second (or direct) method" yields
conditions for "“stability in the 1argé“, without the need to integrate the
often difficult variational equations. His theory centers around the
existence of certain algebraic functions (Liapunov V functions) of the n
variables, which possess properties of definiteness of sign in different
regions of phase-space. Liapunov's second theorem states that if there
exists such a definite function V(Xi) whose Eulerian derivative (i.e. a
time derivative taken along a trajectory) is either zero or of oéposite

sign to V in some domain D, then the differential system of equation (1)
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possesses a stable equilibrium around the singular point Xi=0o Weakening
of the hypotheses produces several modified theorems for other "types" of
stability. In the general case, however, his theorems do not specify any
method for determining the function V, nor do they prove its existence.

If such a function can be generated somehow, then it can be used to demon-
strate stability of motions in the large or at least in definite regions,
Al though Liapunov‘s theorems have found extensive applications during the
last 70 years, they still present a number of analytical problems which
can be as difficult as those of the variational theory. But they do begin
to tackle the basic problem of determining the global properties of solu-
tions, as opposed to the strictly local properties.

The same period of history saw the emergence of a fundamentally

different point of view about stability =-- the topological approach of

9/

H. Poincaré>’. He regarded the differential equations of motion as

defining a transformation T" of the phase~-space onto itself. Specifically,

the integration of the equations of motion takes initial coordinates on
the manifold and maps them into final coordinates on the same manifold.
It is not hard to imggine how simple regions of initial coordinates can
become mapped onto quite complex, distorted regions on the manifold. Yet
it is also conceivable that some particular points on the manifold could
be transformed into themselves. Such points are called fixed points of
the mapping ™. 1In fact, Brouwer's remarkable fixed point theorem&/
asserts that every continuous transformation of a closed (n-dimensional)
disk onto itself has at least one such fixed point.

The works of Poincaré in the field of topological approaches to

stability are very extensive, but we need to mention here only one of his
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last theorems, the so-called ''geometric theorem"=, This theorem, which
arose in connection with periodic sqlutions of ﬁhe restricted three-body
problem, concerns itself with any closed annular ring 0 <a <r <b in the
rO-plane (a and b are fixed radii), and asserts that if a given transfor-
mation T" of the annular ring onto itself satisfies certain conditions,
then at least two points of this ring will be fixed under T". Those neces-
sary conditions on T" are that it must be one-to~one, continuous, and area-
preserving, and that it advances points on the (inner) circle r=a while -
regressing points on the (outer) circle r=b. (A later extension of this

theorem by Birkhoffil!

generalizes to the ring 0 <a <r. If T" advances
points on the circle r=a and regresses all points r > R > a by at least
some angle 91 > 0, then there will exist at least two fixed points of ™
in the open ring a <r <R.) This extremely remarkable geometric theorem
of Poincaré has set the stage for all later topological investigations of
stability.

Héving isolated at least two fixed points of the mapping Tn, we may
logically wish to know the general properties of the mapping T for points
in any neighborhood of the invariant points just found. If we choose a
(U,V) coordinate system on the manifold with thé fixed point in question

at the origin U=V=0, then we can investigate transformations T of the

general form

U1 = an + bVo + .o

V. =¢U 4+ dvV_+ ...
1 o o

(6)

where (Ul,Vl) is the map under T" of some initial point (UO,VO) in a
neighborhood surrounding the origin, and wheré‘a,b,c, and d are real

constants satisfying ad-bc > 0. By studying the roots Py of the



characteristic equation for the linear transformation above (e.g. see

Minorsky):
p2 - (atd)p + (ad=bc) = O

we find there are three basic types of such linear transformations. These

three cases include

U, = pU

Tn" 1 ° » (3 # + 1) )
h V1 = Uo/p ﬂ
= - 2] ie

™. U1 Uocose Vdsin , G =% (8)
e V, = U_sinb4V cosb

1 o o]
™, U =19 ., [p=+1
P’ V. =4V +4aU {’ (a$0 )~ ©)

1 =o0 0

The symbols h, e, and p designate respectively hyperbolic, elliptic, and
parabolic mappings. That is, under repeated apélications of one of these
mappings, points near the original fixed point (U=V=0) move, or map,
successively into otherlpoints whose locus is one of the three basic conic
sections. Consequently we speak of hyperbolic (saddle), elligtic (vortei),
and Earabollc (nodal) fixed points under the general mapping ™, (A fourth
type of mapping exists if oy is a complex root; the resulting motion is of
a ggi;gi nature, and the associated fixed point is called a focal point.)
In terms of our intuitive concept of stability we might guess the
general stability prOperties'of points 'near" the original fixed point by
reference-to the basic type of ™ mapping under which that ﬁéint is fixed.
Thus elliptic points, plus spiral and parabolic peints with nearby motions
directed inwards to the point, ought to be relatively "stable",'while all

others ought>to be basically "unstable". . For example, the linear mapping



TZ successively maps an initial (neighboring) point along the locus of an
ellipse whose major and minor axes will depend on the exact initial
cooi;linates° l

But the T" transformations diécussed above are strictly linear
mappingsa In general, nonlinear differential equations will possess non-
linear m;ppings ™. Consequently an§ discussion of the possible stability
or iﬁstability of a given fixed point of the mapping ™ will necessarily
be of a moré complex nature., Moreover, there are several additional theo-
retical and ehpirical results of the topological approaches of Poincaré

and Birkhoff that complicate the general nonlinear problem. Birkhofflg/

has proved that inside any neighborheood of a given alliptic-type fixed
point in phase-space there exist clusters of multiple fixed points. These
multiple points aretfgged\under some integer muitiple m of the original
fixed point mapéing Tn” iﬁéo are fixed points of the mapping ™ (m suc~-
cessive applications of ?“)o As we shall see later, for any particular
value of the integer m there is an even number 2m of these ™" multiple

points, and they alterpmte around the T™ cluster between elliptic-type

and hyperbolic=type fixed points. To complicate matters even more,

Bartlettlé/ has shown, in a quantitative demonstration of Poincaré's
theory of consequentéﬂl, that the invariant curves issuing from and

toward a T" hyperboli.c-type fixed point are, in general, oscillatory
curves, (By invarié@t curve we mean a locus of points all of which are
consequents, or maps under Tﬁ, of themselves alone.) 1In fact, these
hyperbolic invariant curves éevelop area-preserving oscillations of
increasing amplitude as they approach the next hyperbolic-type point

beyond the adjacent elliptic-type point.
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It is this (denumerable) infinity of clusters of alternating ™"
fixed points and oscillating hyperbolic invariant curves which complicate
the analysis of nonlinear mappings. In fact, this complex behavior
suggests the possibility that all fixed peints could be ultimately '"unstable".
For example, in any neighborhood of a given elliptic-type fixed point, no
matter how small, one could always find regions containing hyperbolic-type
fixed pgints of increasing multiplicity m. Points near these ™" hyperbolic-
type'points’(m of them) could be readily parried far away by the oscillating
invariant curves issuing from (and coming into) the hyperbolic-type points.
If successive mappings of these points under ) carry them out to infinity,
then the original elliptic-type point would be '"unstable.

The investigation of various forms of area-preserving mappings of
annuli onto themsglves has been a fruitful topological approach ever since
the pioneering work of Pqincaré: It is this same technique which forms the
basis of séveral recent theorems on invariant curves and regions, published
independently by Arnol'dkﬁ/and Moserlé/. Moser's theorem is somewhat
more general, and consequently we shall discuss his work. He first con~

siders the annular region in the r&-plane defined by
0<a<r<b (10)

and the simple circular twist mapping:

91 = 9o + a(ro)

(11)
17 %
of that annular ring, where the function ¢ satisfies
da/dro >0 . (12)

This last requirement on a(ro) means that the amount of the angular twisting



of the mapping always increases with radial distance from the origin of the
polar coordinates. (Note that the sense of the twist is opposite to that
of Poincaréi) It is clear that this simple mapping preserves circles by
simply twisting them around counter-clockwise through an angle a(ro).

Moser next considers a "small perturbation" of this simplé circular

twist mapping, of the form

6. = 6 +a(xr ) +F(x ,0)
1 o o’
o o’ (13)
r, = o, G(ro,eo) ,
where F and G are assumed to be small and of angular period 27 radians. He
then proves that for any € > 0, no matter how small, the above mapping
possesses a smooth, closed invariant curve, lying inside an annular region,

of the form

6= 6"+ p(6)

, (14)
r = T, + q(8")

where the functions p and q also have an angular period of 2W radians and

possess .8 continuous (partial) derivatives satisfying

lply + lalg <e. (15)
Moser also assumes that the follewing conditions hold:
i) Every closed curve near a circle:
r = £(0) = £(64211) = a constant (16)

intersects its mapped (image) curve at least twice;

ii) There exists a constant Co > 1 such that

=1 ‘ '
C, <da/fdr <C ; Q17)
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iii) There exists a 6o(e,s,co) and an £(s) such that

[#l, + lel, < ¢,

and ) (18)
lol, + Iel, + lel, < c,

Finally he asserts that the mapping induced on the curve of equation (14)
is given by

e{ = 6 + a(r ) . (19)

Moser later develops a formula for 4(s) and obtains the large value of 4=333!
Thus the existence of only a (large!) finite number of partial derivatives
of Fqc, and O are necessary (in contrast to the theorems of Arnol'd which
require infinitely many derivatives to exist).

Moser's theorem has an important bearing on the stability of solutions
of differential equations. For if its necessary conditions for the mapping
are met, then the theorem asserts that there exists a smooth, closed invari-
ant curve of the mapping. This statement in turn means that the invariant
curve and the interior region it bounds must always be preserved, even after
an infinite number of mappings of the region onto itself. Consequently,
points which 1ig initially anywhere inside the invariant region will always
map into other points somewhere inside this region and thus will be
absolutely stable (i.e. for an infinite time). Points‘initially outside
this region may map anywhere outside, in particular to infinity, so that
we can make no general (absolufe) predictions about such points.

One method of'studying Moser's contentions (and the general question
of stability) is to pick a simple nonlinear differential equation which can

be integrated in some closed form. We can then use a high-speed digital
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computer to investigate its periodic and "almost=-periodic" solutions to
a high degree of accuracy. This arithmetical approach haé been adopted
in our rgsearch in order to avoid the accuracy limitations of ordinary
numerical integration techniques. (We will, however, employ the latter
approach for certain preliminary calculations.)

The non-autonomous (time-dependent) equation chosen, the "Cubic
equation", arises in connection with the motion of charged particles in

acceleratorsl-q/° It has been studied numerically by Powell and Wrightlzj,

13/

and later by Bartlett==' using the Illiac I computer. The dimensionless

form of this "Cubic equation” is

2

dX 4 ey xP = 0 (20)
dt

where p(t) is here chosen to be a periodic square-wave function of time,
with a constant ﬁagnitude P, and a fixed period T, that is
p(t) = Py > 0 for = /4 <t < T/4 (21)
p(t) = -p_ for /4 <t < 31/4
This equation can be eésily integrated in a piecewise manner (i.e.
over each half-period 7/2 of the square-wave) to yield piecewise first
integrals of the motion. These in turn can then be integrated once more to
give a piecewise solution for X(t) and i(t) in terms of Jacobian elliptic
functions. Given initial phase;séace coordinates (Xi,ii) we can thus obtain
the coordinates (xl,il) at the end of the first quarter-period of the
square-wave, Using these coordinates now as initial coordinates, we can
calculate the coordinates (Xz,iz) at the end of the next half-period of
motion, and so on in steps of /2 thereafter until we desife to stop.

Thus a phase-space trajectory of period nT can be constructed, where n is
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some integer multiple of T (i.e. an integral number of square;wave cycles).
This trajectory, then, corresponds to a mapping Tn(T) of the phase-~space
onto itself. We shall study the properties of this ﬁapping and its multi-
ples. A brief analysis of the possible solutions to equation (20) together
with detailed methods for numerically calculating the piecewise trajectories
above (i.e. the mappings Tn(r)) are given in the first appendix.

The object of this research will therefore be to analyze experimentally

(i.e. by using éomputers) the mathematical contents of Moser's theorem for

‘the above '"Cubic equation'. If we can assure ourselves of extreme precision

in these computer calculations, then we ought to be able to locate and
determine the precise shape and size of the closed invariant curves and

regions, if they exist. It is hoped that these experimental methods will

then be applicable to any nonlinear system of equations. If so, then a
practical numerical understanding of the absolute stability of solutions
for any particular nonlinear differential equations can be obtained easily

and quickly.
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II. CALCULATIONS

A. Exploratory mapping of the phase-plane

The analysis in the first appendix shows that we can utilize a
3
digital computer for the rapid and accurate calculation of any desired solu-

tion of the original equation (20). That is, for any given initial coordi-

nates (xi,xi)«in phase-space we can calculate the subsequent trajectory for

/ '

as many periods of the periodic function p(t) as we desire. The accuracy

of these solutions will be limited chiefly by the capacity of the computer.

A program (listed fo: :eference in the second‘appendix) has been written
iﬁ the machine laﬁguage (NICAP) of the University of Illinois' Illiac II
computer in order to obtain maximum (12-place) accuracy. (The Illiac II
computer utilizes 52-bit words in the form of four quarter-words, and has
a speed of up to twice that 6f the IBMP7694 computer,)

[1t has aiso been convenient to write a simpler Fortran program
(also included in the second appendix) for the direct numerical integration
of equation (20) using a modified Runge-Kutta-Gill integration routine.
This program, run on bﬁth the IBM=7094 and the Illiac II, has been highly
useful for general exploratory investigations of solutions. Although the
calculations made with this program are limited to about 6~p1acé accuracy,
they are helpful in ascertaining just which solutions require the highly
 accurate NICAP program. The program has the additional virtues of being
short, simple to write, and compatible with IBM computers. Time-ﬁise,
however, the Fortran program is about 3 to 4 times slower than thé NICAP
program, in spite of the latter program's length and complexity (1250 ﬁICAP
instructions compared with 110 Fortran statements). On the average

the NICAP program can calculate about 2200 periods of p(t) per minute of
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computer time, while the Fortran program can compute only about 660 periods
of p(t) per minute.]

An exploratory scan of solutions (in the phase-plane) was made on
the Illiac I computer by Bartlett, who found that all fixed points in the
phase-plane are either on the two coordinate axes or else are maps of these

pointslé/.

A list of fixed points on the two axes for n=2,3,...,12 is
reproduced in Table 1 for reference. These values are accurate only to
about 3 decimal places (which is adequate for initial Studies); As n gets
larger the corresponding points fixed unde; Tn(r) lie closer éo the origin
and closer to one another. We shall seé that around any of these T (7)
fixed points there lie clusters of "“satellite” multiple points fixedmuﬁder
the transfofmation Tmn(r), where m is an integer.

Knowiﬁg the location of the simpler fixed points, we can proceed
to investigate sémé of the properties of their associated solutions.
Preliminary repeated mappings under Tll(T) of points initially inside a
relatively largé neighborhood of the T11 elliptic fixed point on the
+X-axis (at gbout Xi= 1.667) showed that the consequent (mapped) points
generally return repeatedly to the same initial neighborhood. Few escape
to infinity or wander very far fiom the initial neighborhood. Other T
elliptic fixed points were similarly scanngd, but none exhibited such an
apparent “'stability" of the repated mappings. Thus the remainder of this
work will concern itself with a detailed analysis of the region near the

11

T"" elliptic fixed point. A plot of the periodic orbit in phaseasPaée

11

that is associated with this T™~ fixed point is shown in Figure 1. The

(22) encircled points mark the end of each half-period arc of motion,
- while the Tll fixed point on the +X-axis (the initial conditions for the

orbit) is enclosed by a small square.
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Table 1

Approximate axis locations of some fixed points

of the mapping T"(t), for n=2,3,...,12.

X=-axis

3.4143
3.1823
2.387
2.338
2.1086
2.058
1.9106
1.8506
1.736
1.667

1.5777

X-axis

9.6012
0;4591
0.3775
0.3579
0.3088
0.1639
0.1545
0.1464
0.1259
0;1021

0.09339

15
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Figure 1.

Periodic phase-space trajectory associated

11

with the T™" elliptic fixed point on the

X-axis.
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The X-axis near the point Xi= 1.667 was mapped for the multiples
m=1,2,3,4, and 5 of the basic period nt=llt, and the results of the Runge-
Kutta method are shown in Figure 2. Note the striking "twisted" character

of these mappings, a feature that will piay an increasingly important role.

11

In the figure, E, marks the T~ fixed point, and the (+) superscripts on

1
the letters A,B,C,D, and E indicate the curve is a map bf~the +X=-axis for
m=1,2,3,4, and 5 respectively. Each succeésive mapping is a twisted
(rotated) version of the previous one, so that even by m=3 the plots become
intricately twisted around each other. Sections get thrown outward and
then return to intersect the axes again, more éften the greater m is.

Yet a great deal of useful information cén-be obtained from this
exploratory plot. First of all we observe that something in the structure
of our nonlinear system ié creating two wide "escape avenues" for points

11

around the T™~ fixed point. These begin in the neighborhoods of (1.66,

0.01) and (1.65,~0.01) and carry the mapped axis curves far away from

the fixed point E Already we have signs of what we would intuitively

15
call "instability".

The other pieces of valuable information are the intersections of

the various mapped axis curves with the X-axis and with each other. Curves

33 and T33

mappings respectively. Similarly E and C give fixed points for TSS and T33

et and C+ intersect the +X-axis and reveal fixed points for the T

on the -X-axis. Curves D+ and B+ intersect the =X-axis and locate points

fixed under T88 and '1‘44 respectively; the same applies for D and B inter-

secting the 4X-axis. 1In addition, these curves cross each other. Curve

44=11 _ 33

A* intersects D+ and so reveals a point fixed under T T°7. Other

T33 points arise from the following intersections: A with D, B+ with E+,
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Figure 2.

Tllm twist mappings of the X-axis around

the T'! elliptic fixed point, for

m=1,2,3,4, and 5.
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and B with E. The intersections of A with E+ and Aﬁ'with E yield points

fixed uhder T88,

Already we see some of the multiple (fixed) point structure of the

11

T"" fixed point revealed to us in this simple scan. So far we have the

approximate coordinates of 6 points fixed under T33, two under T44, two

under Tsst and 4 under T88. The 6 points fixed under 332 30 (for n=11)

represent the totality of TBn

points which have been found in the cluster
around the T" fixed point. In simple cases we can expect 2m multiple
fixed points of the mapping ?mn in a cluster around the T" fixed point.

Of these, m will be elliptic fixed points and m will be hyperbolic points,

alternately spaced around the T fixed point.

B. Accurate mapping of the phase-plane

A finer scan, using the more accurate NICAP program for the Illiac

I1, resulted in accurate fixed point values for the T33 and T55 mappings.

These values are listed in Table 2, along with the results of a later
determination of the type of point (i.e. e or E stand for elliptic and

h or H for hyperbolic~type fixed points). The points belonging to an e

(or h) set for T33 and T55 are listed as the successive Tll transforms

of the initial-point on the X-axis. Approximate values for the two hyper-

bolic fixed points adjacent to the T11

are taken from the work of Bartlettlé/.

elliptic fixed point on the X-axis

To investigate the type of motion for points initially in a neigh-
borhood of the basic T~ fixed point or its ™ multiple points we can
simply have the computer print out and plot the repeatedly mapped coordi-
nates at intervals of n or mn periods. We can then draw a smooth curve

through the locus of these successively mapped points and call this a
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11
11
11

33
33
33
33
33
33

55
35
55
55
55
55
55
35
35
55

Exact locations and designations of fixed

Table 2

points of the mapping Tmn, for n=11 and

m=]1,3,5.

.S
1.666735430

1.6395
1.6395

1.687355697
1.653501571
1.653501570
1.650033472
1.673820978

1.673820976

1.672374290
1.661880306
1.668547852
1.668547852
1.661880306
1.660868636
1.671135787
1.665062836
1.665062836
1.671135787

jpse

0.0

0.01690

0.01690

0.0

3.641919791 x
3.641919722 x

0.0

2.109859576 x

2.109859583

0.0
3.119288766
5.276790971
5.276791001
3.119288870
0.0

LI T

3.399519824 x
4.802075374 x

4.802075326
3.399519730

X

b9

1074

1074
1074
1074
107%
1074
10™4

1074

Designation

22
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stroboscopic mapping of the initial point. This curve will be approxi-

mately elliptical ahd closed if the initial point is "close" to an elliptic
fixed point. If, on the other hand, the fixed point is hypérbolic,lthen
this curve will depart rapidly from it. In either case the resulting
stroboscopic curve is an invariant ome, since any point on it will map into

some other point on the same curve (its "consequent”) under ™. Applying

33

this technique to points near the T°~ and TSS fixed points, we find that

1im

for m = 3,5 the T elliptic or hyperbolic poinEJOn the +X-axis lies

respectively to the right'or left of the original Tll elliptic fixed point.
These results are listed in Table 2.
As we move away from the nearly elliptical motions close to an

33

elliptic fixed point (such as e of the T°~ mapping), we find that many

of the points sooner or later jump into regions which contain oscillating
hyperbolic imvariant curves and are then quickly lost to infinity. 1In
making a stroboscopic scan of the X-axis, with Qi=0 and r, < 0.040, where
r, is now the initial radial distance from the ol elliptic fixed point
El on the X~axis, we find that this sort of jumping behavior persists for
all elliptic regions down to about r,= 0.0090. Now, as we approach the
TSS elliptic point e(l) on the X-axis, the motion becomes approximately
Szglignévery 5 multiples of the base period (11T) of the mappings.
Plotting every fifth point we obtain counter-clockwise stroboscopic

11

motion around the T~ elliptic fixed point E.. 'The periods for the .com-

10
pletion of one stroboscopic revolution increase to infinite values as we

cross the ocuter invariant curves of the adjacent TSS hyperbolic points.

Inside these invariant curves the periods decrease to zero when we arrxive

55

at the T™~ elliptic point e(l) itself. As we move to the left of this
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point, they quickly get large again, become infinite as we cross the inner
invariant curves of the adjacent TSS hyperbolic points, and then start
decreasing.

These approximately closed, elliptical stroboscopic motions under
T55 continue in a clockwise sense now, no matter how close we go toﬁard El
(at least down to the distance .= 10’8)3 There seem to be no further
hyperbolic "leakages" to infinity, even though we are crossing an increas-
ingiy denser set of clusters of alternating fixed points with multiplicities
greater than 5. So it seems that we have found an invariant region of

. stability. For, once inside the invariant curves from the TSS

hyperbolic
points, at about ?i= 0.005, the endpoints of the Tll trajectories always
remain inside this region, performing approximately closed, elliptical
motions about Eif A plot of these stroboscopic motions for initial X-axis
points in the range 0.0002 < r, < 0.0090 (for 6i= 0 again) is shown in

Figure 3. The five "islands" of locally elliptical motion under ‘1?55

35 show

separated by five "channels" of locally hyperbolic motion under T
up clearly, as does the transition from a counter-clockwise to a clockwise
sense of stroboscopic revolutions. (As we move radially outward from the
point El the periods for the plotted stroboscopic revolutions increase
from 120 to 1040 multiples of 117 for the inner clockwise motioh§; then
from 1060 to 200 and back to 1060 multiples for the "island" regions; and
finally from 1140 to 90 multiples for the outer counéerwcloékwise motions
shown.) |
Thus the motion near ;he ']35—5 cluster is "stable" while the motion

near the T33 cluster is "unstable'". We need to explain this difference

in behavior. As will be seen later, the invariant curves from the . -
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Figure 3.

8troboscopic trajectories of the mapping

T55 around the Tll elliptic fixed point.
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hyperbolic points of T33 have the general oscillation property (first
demonstrated by Bartlettlg/). There do not appear to be any such oscilla-

tions of the T55 hyperbolic invariant curves in Figure 3. These hyperbolic

invariant curves instead seem to join one another smoothly as they envelope
the well-defined elliptic "islands". Perhaps, then, instability goes hand
in hand with these oscillations, while stability is a result of the lack

of such oscillations.

C. The mapping T11

In order to see how the above apparently stable inner region coexists

with the unstable outer regions, let us study the mappings for ‘1‘11 in a

region around the elliptic fixed point E. and large enough to include the

1

two adjacent hyperbolic points H1 and H The invariant curves issuing from

9°
one hyperbolic point develop larger and larger oscillations as their overall
motion carries them towards the nearest hyperbolic fixed points. This
should hold true for both the inner and outer invariant curves, where we
define "inner" as closer to the origin of our XX coordinate system, and
"outer' as farther away from that origin. 1In our case we find fhat the
inner invariant curves move from H2 toward Hl with increasing oscillations,

while the outer invariant curves move from H1 to H2. (A plot of similar
hyperbolic invariant curves for the mapping le(r) is shown in Figure 3 of
reference 13).

To obtain these curves we need only pick initial points rather close
to H1 or H2 and then map them repeatedly. From earlier discussions of motion
near hyperbolic points we know that these points will move rapidly towards

the invariant curves and be asymptotic to them. The initial points can be

taken to be on a segment of the straight line from El to HZ. At the end
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of 11 periods the series of successive points will haye been mapped into a
new series of points forming the locus of the first mapped curve. This
can be repeated for as many multiples m as desired, thus obtaining m mapped
curves of the original straight linme. If the range of initial radii is

too small, these m curves will be disjoint. By choosing the initial inter-
val just long encugh, the m mapped curves will just overlap each other.

We call one such barely overlapping mapped curve "one full oscillation”

of the invariant curve. (Actually they will miss each other very sligﬁtly
because two successive points on the initial straight line are at slightly
different distances from the adjacent hyperbolic invariant curves.) These
barely overlapping m curves can then be joined together smoothly td give a
fairly accurate plot of the outgoing hyperbolic invariant curves.

In our calculations we use a section of the line between E, and H,,

1
at an angle of 211.85° to the +4X-axis, with radii in the range 0.0300 < r,
< 0.0316. 1Initially the scan can be in large increments of the r, values

5

(such as 5 x 10" or 10m5)n but eventually it becomes necessary to go to a

finer grid with increments of 2 x lOm6 in - The results of these
mappings are plotted in Figure 4 as curve F, shown issuing from the point
H2 and moving upwards toward Hl° This is the "inner" invariant curve, as
it passes to tpe left of E1 (i.e. closer to the XX origin). The outer
invariant curve, plotted as curve G in Figure 4, is obtainéd by using a
section of the line between Hl and the point (1.716, 0..0)° The angle of
this line is 167.54° to the +X-axis, and the interval of initial radii
covers the range 006750 < r < 0.0780 in increments as small as 2 x 10-6.

Figure 4 also contains the reflections in the X-axis of curves F and G,

labeled F and G respectively. From the time-reversal invariance of our
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Figure 4.

Hyperbolic invariant curves of the mapping

T11 and their relations to those of the

mapping T33,
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o?iginal equation we see that these cﬁrves are solutions not only for the
motion with time running backwards, but also for the reversed motion origi-
nating at an infinite negative time énd continuing with time running
forwards toward t=0. Thus, for example, curve F shows a series of oscilla-
tions moving away from H2 and becoming smoother as it approaches and inter-
sects Hl (as an inner invariant curve). Similarly G smooths out its
oscillations as it moves away from H1 to H2 as an outer invariant curve,
Because of the "wild" oscillatioms in these curves, the "forward-
going" invariant curves (F and G) do not join smoothly with their own
reflections (F and G), the “forward-coming" invariant curves. Instead
they intersect one another (F with F, and G with G) an infinite number of
times. The regions between sﬁccessive intersections of F with F-are
labeled 1,2,3,...,8 when F is on the outside (with respect to E,) of ¥F,
and 1,2,3 when F is on the inside of F (these are reflections in the
X-axis of the first set of areas). The regions between successive inter-
sections of G with G are labeled A,B,C, and D when G is on the outside of
G; and B,C, and D when G is on the inside of G. By "inside" we now mean
closer to El’ while "outside" means farther away from Elc
As the oscillations of the invariant curve F issuing from H2 crowd
in towards Hl’ thgy become long and thin to conserve their phase-space
area. By noting the directional arrows on the various sections of the
curves F and F in Figure 4 we can see that all the points in region 1
will map into all of E;Ithen into all oflg, and so on into the inside of
the hyperbolic invariant curves. But these points in 1 come from a
longer, thinner oscillation 0 (not shown) that is closer to that incoming

hyperbolic invariant curve which intersects H, from a direction exactly

2
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opposite to the incoming curveiE, That is to say, these points may come
from regions quite distant from El and yet still get in close to El'
Similarly we can see the fate of points within the "inmer" region 6. They
will map successively into regions 5,4,3,2, and 1 aﬁd theﬁ into a longer,
thinner region which is closer to the outgoing hyperbolic invariant curve
through H, (i.e. into a region which is a simple reflection of region 0
above, the "antecedent" of region 1). Thus these points initially within
an inside region will soon escape to regions quite distant from their

13/

original region. In fact, as Bartlett has shown==, these oscillating

curves around the T11

fixed point El will intersect similar invariant
curves of the Tlo mapping, so that some of the points in the region
between these two sets of intersecting curves can be carried even further
outward, eventually reaching infinity. The time-reversed motions will
analogously bring points in from infinity to a region close to El'

This same discussion applies to the regions formed by the intersec-
tions of curves G and G. Thus points from infinity can move into region
D and then map into EL%;K (not shown), and so on into the inside of the
invariant curves. SimiiarlyD inside points within region A (or its
unplotted antecedents) will map successively into regions B,C,D and then
quickly move out directly to intersect the Tlo hyperbolic oscillations.
This is easy to visualize because region D lies outside that incoming
hyperbolic invariant curve to H2 which forms an outer bound tb the
(incoming) oscillations of curve F. This shows indirectly that the out-
going qscillations of curve F also reach infinity via intersections with

Tlo oscillations. To see why, consider the reflected curve F coming in

from the same distant regions reached by curve F. Points inside T will
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map into 2,3, and so on. But notice that §'in£ersects region A (as %4 will
intersect B), so that points in the mutual intersection of’regioﬁsﬁi and A
will map into B, then C,D, and so on out direétly to the Tlo oscillations.
This may sound like a tautology, but nonetheless the observed facts are

that points do escape from inner regions around E; to infinity.

1

We now have a mechanism whereby points may escape to infinity even
when relatively close to an elliptic fixed point. Going back to Figure 4
we see that the inverse (time-reversed) maps of region 2 (i.e. regions 3,4,
5,6,...) should eventually f£fill a great deal ofAthe space inside the inner
and outer invariant curves because of their préﬁerty of preserving phase-
space areas. In principle we should be able to keep mapping region 2
backward in time or 2 forward in time,'which in reality is how we actually
make the maps (it is more convenient here to plot their reflections). Then
in the limit perh;ps we would end up with some envelope of the succéssively
mapped regions which would coincide with gome invariant inmer region of
stability.

Unfortunately we cannot do this in practice, for the mapped regions
get progressively thinnér and more convolu'ted° Region 5 is the last
relatively complete region shown; un&er a time-reversed (inverse) mapping
of;‘l.‘11 the section of region 5 lying inside region C gets "squiréed” out
to region D, the antecedent of C, and only the tip of the ﬁapped reéion
6 re-enters the inside of the invariant curves. For the next few inverse
maps we can only plot very small pieces of the mapped regions such as
regions 7 and 8 in Figure 4. These small "hairpin" regions correspond to
just a short segment of the imnside portion of region 6 in the neighbor-

hood of the bump near the number 6! We will therefore have to resort to

some other approach in order to continue the investigation.
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D. The mapping T >

1

Since a knowledge of the oscillating invariant curves for T 1 has

helped us to explain the escape mechanism, let us next find these curves

33 11

for T, (Referring to Figures 4 and 2 we note that the T~ oscillations

44

already discussed have penetrated closer to E. than the cluster of T

1
points, so we may bypass them and instead study the next cluster of points

closer to El.) For this purpose we draw the line between e and hi at an

angle of 171.14° to the X-axis, and scan the line segment with initial

< 0.0135 using increments of about 5 x 10°6.

i
Successive mappings then yield the hyperbolic invariant curves for '1‘33e

radii in the range 0.0127 < x

The invariant curve issuing from h, develops oscillations as it

1

moves toward hz, and is partially plotted as curve 2 in Figure 5. This

curve 2 is not an inner invariant curve with respect to e (i.e. is closer

to our E1 origin than is el), with its motion counterwclockﬁise about e

On the other hand the Tl1 invariant curve from Hl is an outer invariant

curve with respect to El (i.e. is farther from the XX origin than is El),

1

with clockwise motion about El"

By getting computer printouts of every llT periods we can easily

obtain the Tll and TZZ maps of curve 2 by plotting the points for

t=117,441,777,... and t=227,557,887,... (since curve 2 comes from points

11

at t=0,337,66T,...). The T " transform of curve 2 is plotted as curve 3,

while the T22 transform of curve 2 is shown as the more detailed curve 1.

These curves and their mirror reflections in the X-axis (1abeled‘T,2, and
3) are all the "inner" 33 hyperbolic invariant curves (i.e. they lie

closer to E, than e ;e,, or e and so we designate them as "“inmer" with

1 3

respect to E1)° To obtain the "outer" invariant curves (again outer with
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Figure 5.

Hyperbolic invariant curves of the mapping

T33 and their relations to those of the

mapping 72,
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respect to E., as they extend farther from E, than €:€y; OT e3), the

1 1
easiest method is to pick several points along a short segment of the

"inner" outgoing curve 1 which is very close to the T33 hyperbolic point.
h3. Extending this short segment of curve 1 through h3

points on this new extended straight-line segment of the "outer' outgoing

, We can then map

invariant curve. The results are partially piotted as curve 6 in Figure 5.

The '1‘11 and TZZ maps of this invariant curve are plotted as curves 4 and

5 respectively. The reflections of these 3 "outer" outgoing invariant

curves are plotted as curves %,5, and 6, and complete the picture for all

33

the T°~ Youter" invariant curves (about El)°

We shall discuss these intersecting oscillating invariant curves by
comparing them to the picture for the Tll mapping. Looking at the inter-
sections of curves 1 and 3 we can predict that points initially between
the invariant curves in region A will map successively into region B,C,
D,E,F,G,... outside the invariant curves along outgoing invariant curve 4,
Similarly exterior points in region N will map into regions 0,P,Q,R,S,...
and become interior points. The same phenomena occur for the intersec-
tions of curves 2 and 2 or 3 and 1. For example, for the former, exterior
points in region M (near the incoming invariant curve 5) map into interior
points in region H via the regions L,K,J, and I. Interior‘points in
region Y become exterior points in region‘T via regions X,W,V, and U.

Here we are again using "interior" to mean closer to E_, and "exterior"

1
to mean farther away from E1° Thus the term "exterior' here would be
called "interior" (to the regioﬁs around e ,e,, or e3) if wé were investi-
gating the stability of e1,€y, Or e, rather than El‘ (In effect we have
‘ 11

already investigated e, by observing that the T~ oscillations reach in

1
close to it eventually.)
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But now there are additional complications. Not only, for example,
do curves 2 and 2 intersect one another, but their (inmer) regions of

mutual intersection are themselves intersected by curves 1 and 1 (issuing

to and from the nearby T33 hyperbolic point hs)i In the case of the Tll

oscillations the nearest hyperbolic points to H1 and H2 are a good distance

away along the cluster of 22 glternating T11 fixed poihts surrounding the

xk origin. For T33 the nearest hyperbolic point to h1 and hz

This same pattern of mutual integ—

is just the

equivalent satellite multiple point h3°

section of neighboring inner oscillations similarly occurs when curves 2

i
and 3 intersect the regions bounded by curves 3 and?f, or when curves 3

and 2 intersect the regions bounded by curves 1 and 3.

There are several important consequences of this mutual intersection

¢

property of the inner oscillations. One is that points from the 3 outer
regions (bounded by the outer invariant curves) can get into the inner
region, and vice versa. Consequently points from the outer region sur-

rounding e, for example, can reach the inner region around E1 (via

39
curve 3) and then pass out to the outer region surrounding e (via curve

2), These points might eventually reach the region of e,, Or even e3

again by the same device. A second result is that the areas of the outer
oscillations are considerably smaller (in proportion to the total "outer"
area) than those for the Tll mapping. It thus seems unlikely that these

oscillations will fill up the space around, for example, e to the extent

that the T11 oscillations did around El° But these outer oscillations have

the same area as the inner oscillations, and so we are led to suspect

empirically that the inner region around E, will be relatively free of

1

inner oscillations from the T33 mapping crowding in toward E1 (as they

did for the T11 maps) .



39

A third consequence is that some points will move around the periphery
of the inner region for several entire stroboscopic revolutions before
escaping to the outer regions. To see this let us consider points inside
area Q of curve 1. Those points inside the rectangular area which is the
mathematical intersection of regions Q and Z will map into the transforms of
this area, i.e. the regions R\ Y, S/ X, and so on. But since these points
lie inside region X, they will map subsequently into regions W,V,U,T, and
so on into the guter regions. But let us now consider points inside the
tip of region Q but not inside Q) Z. These will map into corresponding
points in the inner tip of R,S, and so on. But the tip of § does not inter-

11

sect W, so that the tip of the T~ map of § (call it 8') will not intersect

region V. (However a portion of §' ﬁill intersect region W, namely the
T11 map of the region SA X, since X transforms into W.) The tip of each
successive map of 8' will move towards h2 in this fashion, not intersecting
regions U or T (which are transforms of V), and thus will remain on the
inside. By the same token the tip will not intersect any of the inmer
regions I,H,... because these are transforms of regions L,K,J,... which in
turn were not intersected by region S or its antecedents. (These calcula-
tions were in fact carried out, but are not shown in Figure 5 because of
the difficulty of getting enough mapped points for a continuous curve.)
So the successively mapped tip will travel on toward h2 on the
inside, paralleling the inner oscillations of curve 2. Once close.to h2,
the mapped tips enter the domain of tight oscillations of curve 1 as it
moves left towards h3. Now there are seve:ral‘élternatives° Since the
tip of §' (too long and thin to be shown) extends below the X-axis at an

angle # 90°, this tip of 8' will intersect its own mirror image in the

X-axis, §' (which is just the same inner oscillation of curve 1 as §'
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is of curve 1). Now 8' is the antecedent of.g, which in turn maps succes-
sively into regions R,Q,P,0,N, and so on to the outer region., Thus if our
mapped points in the tip of §' lie inside the region defimed by S'N §',
they will eventually go to the outer region along outgoing invariant curve
6. But if they still lie in the tip of S' and mot inside S'f} §', they
will move from h2 to h3 on the inside, paralleling curve 1 but not inter-
secting it. So these points will then move around to the neighborhood of
h3 and into the influence of curve 3. There the same alternatives and
processes will take place as above. Thus we can see that some points origi-
ﬁally inside the region Q can move all the way around the inside periphery
of the invariant curves, while others will gradually leak out near h2 or
h3 (or h

h2’ or h, on the next revolution, etc.). Again because of

1’ 3
the great stretching and twisting of each successive map of the inner os-
cillations, it ié impractical to determine exactly which points (ih a
given initial region like Q) leak out and when, and which points circulate
around the inside periphery and for how long. 1In principle it can be done.
But our main concern is with the vast majority of interior points

that eventually leak to the cuter regions around e To investi-

33

17€p» OF g

gate this let us study both the T and the T11 mappings simultaneously.

Referring back to Figure 4, the curves labeled K,L, and M are the 3 inner

invariant curves of T33

plotted in Figure 5 as curves 1,2, and 3 respec-
tively. The curves P,R, and § in Figure 4 are more complete plots of the
3 outer invariant curves of T33, partially_plotted’in Figure 5 as curves
4,5, and 6 respectively. We recall from Figure 5 that the interior. points
which do escape to the outer regions do so by moving outward with the

(outer) oscillations of curves 1,2, and 3, that is, along the general

direction of the outer invariant curves 4,5, and 6 respectively. Looking
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at Figure 4 we see the connecting link to infinity: the outer invariant
curves P,R, and S (i.e. curves 4,5, and 6) intersect the time-reversed
oscillations of the Tll mapping! Thus, in particular, interior points
which escape (via curves é and 5 of Figure 5) along outer invariant curve
R in Figure 4 will quickly intersect region 7 of the Ill mapping. In one
more map of T33 (three more under Tll) these points will be inside region
4, and will then move successively under Tllfthrough regions 3,2,1 to
infinity., The same applies to;points moving out along invariant curve §
td intersect region 6, or those moving out along invariant curve P to
intersect region 8. (Note the double intersection of R with 4, correspond-
ing to similar double intersections of S with 6 and P with 5.)

A more dgtailed plot of the relationship between theT33 and Tll
mappings is shown in Figure 6. Curve L is one of the oscillating T33
inner invariant curves | (plotted in Figuré 5 as curve 2), Curves P,R, and
S are incoming outer invariant curves (labeled %,5, and 6 in Figpre 5)

which are simply reflections of the outgoing outer invariant curves P;R,

and § of Figure 4. The directional arrows indicate the sense of thé motion

under T33° Also plotted are the reflected :ggignﬁ_zag;aoo,izrof portions

of the time-reversed Tll oscillations previ;ugly discussed. ’For examplé,

7 and 8 are reflections of regions 7 and 8 in Figure 4. 8ince these are
reflections of timemfeversed mappings themselves (for which 8 maps into 7
and so on as time goes forward), then the order of these mappings is clearly
Z:EZ?.,TZZ (In fact, these are the original forward-going mappings obtained
for Tll, and the regions plotted as 1,2y3;oop,8 in Figure 4 are in reality
themselves the mirror reflections of these original mappings.) The plot

shows vividly how the inner Tll oscillations wrap themselves around the T33
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Figure 6.

'Hyperbolic invariant curves of the mapping

T33 and their relations to those of the

mappings Tll_and TSS.
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elliptic fixed points in cycles of 3 (e.g. note the similarity and proximity
of regions §;§;IT, and 14 as they wrap around ez)o It also shows that in
the limit as t ~ @ these tl oscillationé crowd in alongifﬁig and § to the
invariant curves of the T33 mapping (curves 1=6 in Figure 5, or curves K,
L,M,P,R, and $§ in Figure 4). Finally, the plot clearly shows the 3 channels
(along invariant curves P,R, and S§) through which points can escape from
the T33 mapping to the T11 mapping.

We therefore can understand the complete mechanisms for the escape
of points from inside the T33 hyperbolic invariant curves out to infinity.
The first link in the chain of mechanisms is the intersection of the hyper-

bolic invariant curves of the T33 and Tll mappings. The subsequent links

are the intersections of the T11 mapping with the mapping of Tlo, that of

Tlo with Tg, and so on out to Tl and infinity. The key word is intersection.

E. The mapping T55

We can now ask if the same mechanism allows escape from inside the

T55 hyperbolic invariant curves. Our original stroboscopic calculations

seemed to show smooth (non-oscillatory) behavior for T55° The first strong

indication that this behavior does occur has already been noted: the

apparent inability of the T33 hyperbolic oscillations to fill up the region
inside the T33 hyperbolic invariant curves and around El (as do the T11
' 33

curves). Apparently the inner oscillations of the T™~ invariant curves do
not come close to the cluster of 10 fixed points of the T55 mapping, but

instead stretch out thinner and thinner along the inside periphery of their

55

mutual outer boundary, far éway from the T7~ invariant curves.

But to be positive of this apparent non-intersection of the T33 and

'I.'55 curves (just as for the T11 curves, we are here limited in practice
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from mapping very many oscillations of the T33

curves) it is necessary to
study the T55 invariant curves to a high degree of accuracy. The simplest
approach is to study the inner invariant curve issuing from the TSS hyper-
bolic fixed point on the X~axis (h(4) in Table 2), analogous to curve 1 in
Figure 5. The first step is to choose initial points on the X-axis very
close to that hyperbolic fixed point as the origin of a polar coordinate

6 and 9i= 0). We can then make a stroboscopic plot of

system (with r, <10
their subsequent motions under repeated mappings of '1‘55° These points will
rapidly approach the outgoing hyperbolic curve, which is itself asymptotic
to a short straight-line segment through h(4). Knowing the angle this
asymptote makes with the X-axis, we can then map a segment of this radial
line for many successive applications of TSS°

In our particular case the asymptote makes an angle of about 15.9°
with the X-axis, énd the range of initial radii used is 7.00 x 10m7.5 ri”
< 8.15 x 10”7 with increments as small as 2 x 10°9° Once again it is
useful to print out our coordinates every 11 periods, so that we can plot
the invariant curve issuing from the original hyperbolic point h(4) or
from any of the other 4 hyperbolic points which are transforms of it (see
Table 2). 1In particular the choice of the invariant curve issuing from
h(3) is convenient because its oscillations (if they exist) would crowd
into the asymptote to h(4) which has already been determined above.
| The results of these calculations differ strikingly from those for
the T11 or T33 invariant curves. First of all there is a pronounced
increase in the stroboscopic period of the motion. Whereas points on the

11 33

T or T invariant curves cover most of the distance between alternate

hyperbolic points in 4 or 6 multiples of the basic mapping (11T or 337),
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points on the 77

invariant curves require more than 100 multiples of the
basic mapping of 55T periods. Secondly, as points in the original radial
segment near h(3) slowly approach h(4), fhey do develop a small irregular
'scatter", ﬁndoubtedly due to the accumulation of truncation and inversion
errors after so many successive mappings by the computer. [Note that 100
maps under TSS correspond to 5500 periods of T, or 11,000 half-period
calculations. Now each of these calculations involves 9 or 10 computa-
tional steps such as basic arithmetic operations, square roots, and elliptic
function inﬁerpolations and inversions. These latter computations in turn
involve separate subprograms with many calculational steps themselves (on
the order of 10 to 100). Thus each final plotted point may require some

6 or 107 arithmetic operations: If the computer truncation error is

10
in the thirteenth decimal place (as it is on the Illiac II computer), then
this error might éccumuiate constructively for 106 operations or mofe and
hence show up in even the seventh decimal place. In our calculations the
scatter shows up in the eighth decimal place, entirely consistent with the
predictable errors. ]

However, there is no tendency of the T55 invariant curves to develop
any regulai pattern of oscillations analogous to the T11 or T33 invariant
curves. The 46 circled points in Figure 7 are results of the 44284
successive application of the Tll mapping to each of 46 points oﬁ the
original radial segment through h(4) (with 6,= 15.9° and 7.00 x 1077 <
r, <8.15x 10u7), These circled points are the results using an elliptic

=12’ while those points inside

4

function inversion=-routine error of E = 10

squares are the results for E = 10m11° The smooth continuous curve is a

quadratic, least-squares computer fit of the 46 circled points for
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Figure 7.

Computer fluctuations over the 442Eg

Yoscillation" of one hyperbolic

invariant curve of the mapping TSS°
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E = 10"'12 (the best possible accuracy for the inversion routines). This

plot clearly shows the nature and magnitude of the random scatter of mapped

points. Also, this mapped section does indeed correspond to a "full period

55

of an oscillation" of the T°~ invariant curve, For, the first circled

point in the lower~-right corner of Figure 7, which is a map of the point
with r.= 7.00 x 10‘7, transforms under TSS into a point lying below and to

the right of the last circled point in the upper-left corner of the plot,

a map of the point with r = 8.15 x 10“7. That is, the stroboscopic mapping
P i

of the original radial segment at the end of the 447£E successive applica-

tion of Tll overlaps the 4425i mapping of the same original radial segment.

This overlapping of the ends of the mapped segment with the next T55 map

of that segment is what we mean by a "full period of one oscilllation" of

55

the T invariant curve.

The most convincing contrast between the behavior of this T55

invariant curve and that of the T}l or '1‘33 invariant curves is the phase-

space area occupied by any one oscillation of the mapping. Using Figures

4 and 5 we can measure the phase-space area enclosed by one of the T11 or

'T33 oscillations, for example,:region 3 in Figure 4 and region E in Figure
5. For the randomly scattered peoints of the T55 invariant curve in Figure

7 we can simply connect all points in a piecewise (discontinuous) fashion

and then measure the area of the largest areal fluctuation. The results

are
Tllz AII‘; 5.65 x 10-5 Cxi units)
™ A, T1.4x107  ((xk units) (22)
55 17

i A.. =8 x 10

55 (XX units) .
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Now the ratio (All/ABB)': 400, so that if we use this same ratio for
: -10
(A33/A55) we might expect Ass
is that A55 is 106 times smallexr than this area, suggesting that A55

almost, if not exactly, zero. In fact, recalling that computer truncation

=10 (Xi units). What we actually find

is

errors may build up to 10"’8 in both X and X after long periods of time, we
see that the product of the predictable errors in X and X agrees with the
largest areal fluctuation found for the T55 mapping.

Having thus determined, to the 10-12 accuracy of the Illiac II

computer, that there exist no oscillations in the T55

hyperbolic invariant
curves, we can now look at the composite picture of all of the TSS hyper-
bolic invariant curves. The (inner) invariant curve issuing from h(3)
apbroaches h(4) via the radial asymptote to h(4) which makes an angie‘of
360° - 15.9° = 344.1° to the X-axis. 1In what follows we assume that our
point lies an infinitesimal distance from the true mathematical invariant
curve, and that we can perform our T55 mappings with extreme precision.
After repeated applications of TSS, our point slowly emerges near the
outer invariant curve at an aﬁgle around 180° - 15.9° = 164.1°. Refer-
ring to the stroboscopic map of the region shown in Figure 3 we see that
the point will now move around the outside of the fixed point e(4) and
will then proceed into fixed point h(5). But now it will move towards
the X-axis and along an inner invariant curve. It will next go around
e(5) on the inside and then head out into h(l). Next the point will
cross the X-axis with an intercept (xr,O) to the right of e(l) and then
proceed to h(2). In like manner the point will move inside etZ),

through h(3), outside e(3), through h(4), inside e(4), through h(5),

outside e(5), through h(l), then cross the X-axis with 'an intercépf
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(Xz,O) to the left of e(l), next pass through h(2), and finally move outside
e(2) and return to h(3) aiong the same initial in;ariant curve, This
motion represents one complete stroboscopic revolution,

Therefore the union of the forward-going and the forward-coming
(reflected) invariant curves is in reality one continuous, smooth curve with
an angular period of 4T radians. It simultaneously bounds the inner region

55

as well as the 5 outer "islands” of T™~ elliptic fixed points. This curve,

then, is what we may properly call the continuous doubly-periodic invariant

. curve of the T55 mapping.

35

Determining curves which lie very close to this T~ invariant curve

is an easy matter on the computer. We now make long=-period stroboscopic

>3 of a series of points in an interval of the X-axis

mappings under T
which brackets the inner invariant curve intercept (XZ,O)Q From our initial
stroboscopic scan of the X-axis (see Figure 3) we see that the region in
question has a radius ri': 5x 10:’3 for Gi= 0 (again using El as origin

of our polar coordinateé)° From Figure 3 it is clear that initial points
with Xi < Xz will move stroboscopically in a clockwise sense about E

always sticking to the inner periphery of the envelope of the T55

19
invariant

curves., On the other hand, points with Xi > X, will move stroboscopically

£
in a counter-clockwise sense around e(l), defining the "island" curves
about the elliptic point. (Note that if we print out every Tll map of

these points with X, > X, we will simultaneously obtain the other 4 “island”

4
curves as transforms of the original one around e(l).)
We can now take successively finer grids of initial points around the

suspected xz value and calculate for about 300 mappings of Tl1 (about all

that is needed before "island" motions separate from inner-region motions).
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It is then an easy matter to narrow the interval down as close to Xz as

the errors in computation will permit. The result of this scan is the

following bracketed interval for Xzz
= < < =1, .
1.671665069 le Xz X£2 1.671665070 (23)
Setting Xi= le and applying’TS5 successively, we obtain an approximately

closed curve very close to the envelope of the inner T55 invariant curves,
as suggested by its long stroboscopic period of 2610 multiples of 1llT.
Similarly by setting»Xi= X22 and now applying Tll repeatedly, we can obtain
the 5 approximately closed curves around the 5 "islands" (we find each has
a stroboscopic period of 1060 multiples of 117); We miéhf note that from
the mapping of the initial point X, = XLZ (after about 530 multiples of 11%)
we can obtain an approximate value for the.oﬁter invariant curve intercept
Xr of the X~axis. We find this value to be xr‘; 1.672981475. (In polar
coordinates about El’ with 6=0, this outer intercept has r. ::0;00624605;
1ikewise'the inner intercept xz has rz‘: 0,004929640)

The resulting 6 disjoint "closed" curves, lying very close to the
T55 hyperbolic invariant curves, are plotted in Figure 5, with directional
arrows for the motion indicated on a few. The five T55 elliptic fixed
points are plotted and labeled, while the labeled positions of the five
TSS hyperbolic points show up clearly between the five elliptic points,
The same curves are plotted in Figure 6 as one continucus closed curve,

33 mapping, to an accuracy

i.e. as the closed invariant curve of the T
better than the width of the lines in the figure. This closed curve thus

bounds the invariant region of stability which we have been seeking.
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I11. CONCLUSIONS

A, Summary of results: an application

Let us summarize the results of our detailed calculations. There
does exist to the 10”12 accuracy of the Illiac II computer a closed region
of phase-space which surrounds the Tll elliptic fixed point (El) on the
X-axis and which is invariant under successive TSS mappings of the phase=~
space onto itself. Many points initiaily outside this region will escape
to infinity after a finite number of TSS mappings. Some points are stable
for a long time but eventually escape to infinity also, so that they can
be considered to lie in g "twilight zone" that surrounds the invariant

region, The outer T33 invariant curves oscillate and intersect the inner

11

T"" oscillating invariant curves, so that points can move from near the

33 11

T"~ fixed points about E, into the T™~ oscillations and escape to infinity.

1

However in our particular case the mutual intersection of oscil-

lating invariant curves which correspond to multiples of the basic (Tll)

mapping terminates at the T33 level. The inner oscillations of the T33“

mapping do not intersect the outer hyperbolic invariant curves of the T55

mapping which apparently have no oscillations. The union of all the ‘1‘55

hyperbolic invariant curves is actually one continuous closed curve with

an angular period of 411 radiams. This curve bounds a stable region around

the Tll elliptic fixed point Elo

This region of stable motions consists of 6 cells: a large inner
region, plus 5 smaller "islands" which surround the 5 elliptic fixed
points of the mapping T55° The inner region has a generally flat eilipm
tical shape but has 5 distinct bulges toward the 5 hyperbolic points of

TSS, Points initially inside this inner region always remain inside the
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region under successive applications of the mapping Tllo They execute
clockwise, almost-elliptical motions under successive mappings of ’1‘55°
For the purpose of coﬁparison let us arbitrarily select the inner,

almost-elliptical motion generated by successive T55 mappings of the
initial point with 9i= 0, ;= 0.0045, which is just inside the inner hyper-
bolic invariant curves of the T55 mapping. Next let us match an ellipse to
this motion at two points on the curve, for example at 0° and 90°. Identi-
fying the radii at these two angles with the semi-major and semi¥minor

axes of the ellipse respectively, we calculate the corresponding "standard"
eccentricity to be e = 0.995635. The actual deviations of the mééped
motions from a "standard" ellipse which has an eccentricity e, are obtained

by calculating the ratio of the mapped radius r, at some angle 6. to the

1 1

polar radius r, of a standard ellipse for the same angle 61o This
standard ellipse is completely specified by e,= e, and a, values. We
then use the initial radius r, at Gi=;0 for the semi-major axis a,. The

value of r_ at the mapped angle 6. is given by the equation

e 1

lmeo
re(el) = a . (24)

1we2 cosZG
o 1

We now stroboscopically map the initial point Gi= o, r=I,= 0.004929639

in order to obtain a curve rl(el) very close to the inner invariant curves
of T55 which bound the inner cell. A plot of the results for the ratio

rllre as a function of 6. around this mapped curve (using a=rx= rz) is

1 i
shown in Figure 8. This plot shows a large 19% deviation in the direction
of h(4), 15.8% deviations toward h(l) and h(2), and 9.7% deviations

toward h(3) and h(5). Minimum deviations are about 2% in the directions
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Figure 8.

Deviation from a standard ellipse of a
curve very close to the union of inner
hyperbolic invariant curves of the

mapping '1.‘55°
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of e(2), e(3), e(4), and e(5). (The values of r1/re for these Tss.elliptic

points are indicated by small circles.) Thus, very close to the outer
edge of the inner invariant cell the mapped motions deviate from our very
flat standard ellipse for all non-zero angles. Nevertyeless the concept
of a standard ellipse does constitute a good way of comparing a wide range
of mapped motions around Elo

Points lying initially inside any one of the 5 "island" regions will
always remain inside that particular "island"” for successive ﬁappings of
TSS’ but will jump discontinuously through all 5 "island" regions under the
mapping Tll, Undex T55 the mapped motions will bé countér-clockwise and
nearly elliptical in each of the 5 "islands". It is therefore clear that
we can break up our original invariént regibn into 6 cells possessing
separate invariance properties and predictable stroboscopic motions under

55 "

T ~. But because these same 6 cells are also bounded by one continous

closed invariant curve, we can say that there is one invariant region with

a doubly-periodic boundary.

These results can be applied to a totally different type of problem,
the numerical search for additional integrals of motion (see, for example,

the work of Bozislé/ on the restricted three=body problem). Hénon and

Heileslg/, in an earlier general search, plotted disjoint curves which in
reality are stroboscopic trajectories around varioqs T satellite fixed
points (e.g. their Figure 5 is exactly analogous to our Figure 3). They
studied these disjoint curves for a wide range of values of the énergy E
(they considered motions under a general nonlinear potential). Interpreted
in the light of our results, their work shows that the partiéular ™

cluster of satellite multiple points which bounds the invariant region(s)

depends on the energy E. Their plots for lower energies demonstrate that
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the T3n satellite fixed points bound the invariant region(s), whereas at

higher energies the TSn points form the boundary. At still higher energies
the invariant regions get smaller and smaller, umdoubtedly involving ™
éoints with very large m. (One of the figures in the paper of Bozis shows
a multiplicity of m = 37!)

Hénon and Heiles refer to their closed curves (i.e. the stroboscopic
trajectories) around the central point and around the outlying '"islands" as
disjoint "isolating third integrals of the motion". Points, with puzzling
random (or jumping) behaviors, which lie outside these curves are referred
to as points on the "ergodic trajectories in the sea between the islands”
(i.e. where the third integral is non-isolating). Our work shows that
these points are following completely predictable trajectories, as long as
the global ™" mappings are known. It is also clear that the invariant
region(s) we have.found are just those regions where an "isolating third
infegral of the motion" exists. In fact, the bounding ihvariant curve of
our 6 invariant cells is a graphic example of such an “isolating integral
of the motion", for it exhibits a functional relationship between X, i, and
t for successive stroboscopic (integrated) motions. Thus the application
of our methods not only will yield the invariant curves and regions of
stability (for a given equation with given parameter values), but also will
exﬂibi;gsimultaneously the regions of phase-space in which "isolating
integrals of the motion" exist. In reality, these two concépts are -

equivalent.

B. Applicability of Moser's theorem to the ISSVmappigg

Since the delineation of a locally stable invariant region for our

equation has involved much computer time, it would be desirable to utilize
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any general mathematical methods available for the reduction of the time
required} To this»gnd we shall discuss the applicability of a recent
theorem of MoserLQ/: Our exploratory mappings of the X-axis (a few of
them are shown in Figure 2) are highly suggestive of propertiés which

might be necessary conditions for stroboscopic stability. The most obvious

one is the property of twist mappings of the phase-plane, where the angles

of the mapped points increase mbnotonically with radial distance from the
given fixed point. In Figure 2 we see that this property holds for all the
mappings Tllm»(for m=1,2,3,4,5) as long as we stay moderately close to El
(within, roughly, an ellipticai region with e = eg and semi-major axis

a, < 0.0100). As we get farther away from E1 the twisting gets much more
complicated, so that a monotonically increasing Tllm twist mapping may

no 1§nger exist. For example, for the T44 mapping of the X-axis to the
right of E1 (curvé D+) we see that the condition of equation (12) is not
satisfied for a small region around (1.652, ~0.005). This regioh lies

just outside the T33

elliptic fixed point e, (which is located by the
intersection of curves D+ and A+)° Therefore, it appears that some type
of a twist mapping property does exist in the interior of an elongated
irregular region bounded, roughly, by the 6 fixed points of the T33 mapping.
The maps of Figure 2 indicate the geﬁgral regions in which a Tllm
twist mapping appears to exist, but these regions are much more extensive
(in area) than the known invariant regions of Figures 5 and 6. There
seems to be no clue here that the T55 invariant curves form the boundary
of the invariant region. So let us examine in detail the general region
55

of the T”" fixed points, where we know that an invariant region exists,

Since the inner stroboscopic motions are clockwise and almost-elliptical
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(see Figure 3), let us make a T55 mapping of a set of concentric ellipses

and radiating straight lines about and through the point E The maps of

1
these initial curves and lines are shown in Figure 9. The eccentricity of
the initial ellipses is e = e.-= 0.995635. The values of the initial semi-
major axes a_ are 10 x 10"“, 30 x 10"’4, and 45 x 10°% to 125 x 10”* in

steps of 10 x 10m4o The angles 60 of the initial straight lines are indi-
cated near their TSS maps. Evidently a TSS twist mapping condition does

hold throughout this range of initial semi-major axis values. Again, however,
there does not appear to be any readily visible irndication.of.the actual
existence of an invariant region for ao': 50 x 10”4.

For ao'; 100 x 10™% the mapped curves deviate considerably from their
initial elliptical shapes, especially for the initial angles around 0%, 165°,
and 215°, Referring to the plots of the T33 mappings (Figures 5 and 6), we
see that the three.prominent directions for "bulging" of the T55 twist maps
in Figure 9 are toward the 3 hyperbolic "escape chanﬁels" of the T33 mapping
(i.e. along its 3 outgoing outer invariant curves). Theée bulges, signs
of impending escape to infinity via the T33 and '1‘11 oscillating invariant
curves, begin to show up faintly in the mapped curves of Figure 9 at about
a = 85 x 10"4, but not noticeably before that. So once again we fipd no
striking behaviors of the mappings which might indicate the precise loca-
tién of the invariant region around Elo

Moserlé/ has demonstrated the theoretical existence of invariant
curves and regions for mappings which are small perturbations of the
circular twist mapping. Our mappings are very flat elliptical twist

mappings, but we can change our scale so that the minor axis of our el-

liptical motions approximately equals the major axis (e.g. we can adjust
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Figure 9.

T55 mappings of initially concentric

standard ellipses and radiating straight

11

lines around the T~ fixed point.
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the value of Po in equation (20)). An equivalent procedure is to choose
a particular standard ellipse, map its points, and compare the resulting
locus (i.e. the image curve) with the original ellipse, This procedure

is precisely the one which we followed in order to obtain Figure 9.

Now let us see if Moser's conditions apply to the TSS mapping. The
computations fof Figure 9 show that the image curve and the initial curve
(a standard ellipse) generally intersect each other four times. Thus
Moser's first condition (equation (16)) is satisfied. In order to check
his other conditions (equations (17) and (18)) we would first have to
exhibit his functions a(ro)y F(ro,eo)y and G(ro”eo)° From equations (13)

we see that this can be done directly by calculating the increments

86 = (6,-6) = afr ) + F(r_,6) (25)

and ' &r

i

(r;=x ) =G(r_,6)) , (26)

where (ro,eo) is the initial point and (rl,el) is the mapped point, for a
whole series of initially concentric ellipses. (Recall from equation (24)
that ey ag; aqd 60 uniquely determine the r=r, coordinates of pointé' “
on the initial standard ellipse.) By plotting the 46 increment versus 90
we obtain the angular dependence of the F function (for one a value)

plus one value of the ¢ function. Similarly a plot of &r versus 96 yields
the angular dependence of the G function for one a, value. By repeating
;his process for many initial ellipses with different initial semi-major
axes a (keeping e, constant) we can obtain ¢, F, and G as functions of
a, for various values of 60,

Before examining these functional dependences in detail, let us

write down a more convenient elliptical analog of Moser's twist mapping,
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using different functional symbols:
n
6, =T'(0)) =6 +pa,e)+R(a,e ,0) @D

n
and =T (ro) =T + S(ao,eoseo) (28)

1
where a and e, are the semi-major axis and the eccentricity respectively
of an ellipse close to its image curve which lies within some elliptical
annular region. Note that the variable , (or rl) can be expressed in
terms of the basic variables a (ox al) and e, by using equation (24).
Because of the three variables now (ao,eo, and 90), the task of
exhibiting the functions B, R, and S is greatly complicatedo 1f, however,
we set e,= e for copveniencey then we have the simplgr problem of mapping
concentric initial ellipses and radial straight lines and determining the
functional dependences as before. Using the data from the plots in

Figure 9 we can calculate the basic TSS mapping increments
86 = (leeo) = 5(ao,es) + R(ao”es”eo) (29)
and Ar = (rlmro) = S(aopesgeo) (30)

as functions of a, or 60 (fox e = es), Now in contrast to the previous
discussion of methods for obtaining Moser's functions (¢,F, and G), we
find it more convenient to first calculate AP and Ar as functions of a,
for various fixed initial wvalues of 90 (ioeo for a series of different
initial straight lines).

The results of these calculations for A9 and Ar are plotted in
Figures 10 and 11 respectively. The dashed curves in both figures (for

60= 15° and 95°) are plots of 40 or Aor versus r . The solid curves (for
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Figure 10,

Angular 3 mapping increment A6 as a
function of the semi-major axis a, of
an initial standard ellipse, for several

initial angles 60°
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Figure 11.

Radial T55 mapping increment &r as a

function of the semi-major axis a, of
an initial standard ellipse, for several

initial angles 90,
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6 = 0°,5°,15%,25%,45°,95°,135%, and 180°) are plots of A@ or Ar versus a .
o ~ o
We immediately see that plotting the increments A6 or &r versus a gives
a spectrum of curves that can be easily compared, whereas plotting versus:
r does not.
o

Referring now to the solid curves in Figure 10, we notice that the
4

49 function is smooth and differentiable over the full range 0 < a <125 x 10 7,

well beyond the known invariant region at ao'; 50 x 10@4, The A6 function
is always negative for the inner region 0 < a < 55 x 10,4’ always positive
for the outer region 60 x 1Om4 < a < 125 x 10°4, and is monotonically
increasing over the full range. The first two features correspond to the
known (opposite) directions of the stroboscopic motions for, the two regions.
The small region between the inner and outer regions corresponds to the
cluster of TSS fixed points, where the sense of the motion changes sign at
different a_ values depending on the angle 90 (e.g. compare a straight
line through e(l) with one through h(l)).

The function f is ordinarily obtained by plotting A6 versus 90 for

various fixed initial wvalues of ao, and is the angularly independent part

of each'df'these curves., Now the 46 function is approximately symmetric
about 90= 180°, so we might use the Af intercepts at 9°= 0° .or 180° as
the value of s(ao) for each curve, provided they are identical (B is just
like aﬁ‘additive constant for all 90 values). If they are not identical,
then the function B contains some angular dependence (and there is no
exact symmetry about 9°= 180°)° One way to check this possibility is to
compare the 9°= 0° and 180° curves in Figure 10 for the full range of a,
values. For the.igggg region we find that these two curﬁes always differ

from one another by less than 0.1° in the ordinate 46. Both curves
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increase almost linearly from about 46 = =1.25° for a = 10 x 10-’4 to about
86 = -0.3° for a = 50.5 x 10¢4° For the outer region we find that the
two curves differ widely from one another by as much as 24° for a = 125 x 10"4.

They still increase monotonically.

Hence we may conclude that for the inner region the function B is a

small, negative, almost linearly increasing function of a s with approxi-
mately no angular dependence. For the outer region B is a rather large,
positive, increasing function of a., with very definite angular dependence,
The function R(ao,es,eo) for the inner region is a negative, mono~
tonically increasing function of a for all angles 90o For this inner
region we see that for fixed a values, A9 first decreases with increasing
90 and then increases again. In other words the second derivative of 48
with respect to 60 is positive for all 90 and all a in this region. For
the outer region ﬁhe conclusions are not so definite because of the angular
dependence of B (which decreases as 90 increases). Here R is a positive
function of a_ which increases with increasing a s except for 60‘2 15°%:
when the reverse is true. Scanning the angular dependence we observe
that the second derivative of 46 with respect to 90 is now negative for all

6 when a < 80 x 102,
[e] [o]

When a > 80 x'10m4 this derivative is still
negative for most values of 90, but it does develop a pronounced positive
region for 0 < 90 <'15°;

Let us now turn to the solid cuxrves for or versus a in Figure 11.

Analogous to the A6 function, the &r = S(ao,e 90) function appears to be

s!
smooth and differentiable over the full range 0 < a_ < 125 x.1o“4,-aga1n
well beyond the known invariant region. Now, however, the function takes

on both positive and negative values inside each region, depending on
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the 90 value. There is also no striking pattern of monotonicity of the
function over the two regions. We can only say that the function

$(a_,e

o s,90) has a varied (continuous) dependence on a in both regions.

For the inner region we notice that the function &r is generally positive
.and rather small for all angles 90. In fact the values of &r range between
+5.1 x 10-4 and -1.3 x 10‘4"for all values of 60 (when a, is in the inner
region). For the outer region the fluctuation of A&r with vatying 9°<values
is markedly greater. For example, for a = 125 x 10w4 the range of values

4 to =81 x 10‘”4° Thus we can conclude that for the

for &r is +86 x 10~
inner region the function § is nearly independent of the angle 60, whereas
for the outer region it is strongly dependent on both a_ and 90.

All of these results for the behavior of our g, R, and § functions
(or Moser's q, F, and G functions if we convert to the polar coordinates

1,6 exclusively) can be summarized in the following relations for the

two regions discussed above:

Inner (Invariant) Region

6, =0 +p(a_,e )+ R(a_ ,e ,0)
TSS: 1 o o’’s o' s’ o (31)
r, =T, + S(ao,es,eo)

where <0, R<0, |[g] <<|R|

with dp/da_ >0 , d2p/da’ =0 (32)
N )

and /28 >0, azx/aei >0, /302 To ;.
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Quter (Non-invariant) Region

6 =0 +p8(a,e_,0)+R(a,e,0)
TSSg 1 0 o’ s’ o o’ 8’ o (33)

r, =1 + S(ao,es,eo)

where B >0, 09p/30 <0, 93B/3a >0
° 3 (34)
and R>0, 3R/ >0, a"-,n{a‘eﬁ <0 for 6 5 15°

We are now in a position to check the applicability of Moser's
second and third conditions (equations (17) and (18)) to our '1‘55 mapping.
First of all, it is clear that p (or a) is a monotonically increasing
function of a over the full range of a values plotted. The value of
dﬁ/daO is positive and approximately constant in the inner region, while
aﬁ/aao is positive, increasing and bounded in the outer region,‘ Therefore
if we choose any number greater than the upper bound of aﬁ/Bao as the
constant Co in equation (17), then Moser's second condition will be satis-
fied by our T55 mapping over the open interval 0 < a, <125 x 10“’4°

In order to check Moser's third condition we first obserQe that
both the R and § functions are bounded and continuous over the open inter-
val 0 < a_ < 125 x 10040 Thus we can choose some finite value ofAbo which
is greater than the sum of the absolute bounds of the R and § functions.
From the smooth, continuous behavior of the B, R, and S functions we can
estimate the sum of the absolute values of the 4 = 333£i partial derivatives
of these three functions as approximately zero, and in any case less than
the value of C chosen above. Hence Moser'’s third condition is satisfied
by our\'l.‘55 mapping over the open interval 0 < a, <125 x 10”4°

| Because all of Moser'’s conditions are satisfied, we may conclude

that invariant closed curves and regions will exist somewhere within the
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standard ellipse having a = 125 x 1Om4 and e.= 0.995635. Indeed we have
already found an invariant region which is bounded by the union of the

hyperbolic invariant curves of the TSS

mapping and which is located approxi-
mately within the standard ellipse having a = 50 x 1004, However we have

also seen that points outside the latter ellipse but still inside the

larger ellipse having a= 125 x 10m4 do escape to infinity in a finite

time. Since Moser's conditions apply to this outer, unstable (non-invariant)
pPPLYy _ :

region as well, we conclude that Moser's conditions are not sufficient to
locate the invariant region precisely.

'The empirical properties summarized in equations (31) through (34)
exhibit several distinctions between the inner invariant region and the
outer non=-invariant region for the T55 mapping. For example, the transition
of p from a linear to a nonlinear function and the abrxupt change of magni-
tude and functioﬁal dependences of § may be possible theoretical clues
"to the exact location of the invariant region., At this point it should
be noted that exhibiting the B, R, and 8§ functions involves as much work
as actually locating the invariant region accurately. But an adequate
theorem would definitely be valuable for rigorously proving the actual

invariance of the region.

C. Summary of methods

Having shown that invariant regions of stability do exist, and that

at present they can be located most rgédi;y by using a computer, let us
now summa£ize our practical, empirical méthods for exhibiting the existence
and form of the invariant curves.

The first step is to find the fixed points by scanning the phase-

plane in some systematic fashion; such as repeatedly mapping a grid or mesh
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of points. If these mappings are superimposed on the original grid, their
intersections will yield all the fixed points in the phase-space. For
this work a computer program based on numerical integration (e.g. a Runge-
Kutta=Gill routine) should be quite adequate.

Next we can look for invariant regions around any particular one
of these fixed points. If Tn(r) refers to the mapping under which the
given point is fixed, then we can apply this mapping a number of times m
in succession to each of a series of points along an axis through the fixed
point (e.g. m=5 or 10 times). This initial scan can be rather coarse, but
should cover a reasonable neighborhood around the fixed point (for example,
a radial range of perhaps 10@3 to 10m2 or more). Now for gggglvalue of m
plot the locus of that particular mEE map of the entire series of points
along the axis. If the original point is strongly unstable, then the maps
of points along ?he axis will jump about discontinuously and may quickly
reach infinity (even for m=2 or 3). But if the mapped loci of the axis
points seem to possess some form of a general elliptical twist mapping

of that axis, then look for any repeating patterns in the successive "

mappings of each initial axis point by itself. For example, do the radii

or especially the angles of the mapped points seem to exhibit similarities
every m cycles of the mapping ™7 1If so, for what regions? If not, make
a finer grid and scan closer to the original fixed point; increase the
number m of successive T mappings of each point;°

If a pattern eventually emerges, it will probably be indicative of
precisely which mEh cluster of Tmn(r) satellite multiple points of the
original fixed point bounds the invariant region (and which hyperbolic

invariant curves make up the doubly-periodic invariant curve around that
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region). If no pattern ever emerges, even though the mappings are quasi-
stable, then the original point is probably an elliptic point which is
nevertheless unstable. Again we should stress that the appearance of an
elliptical twist mapping around an elliptic fixed point seems to be a
necessafy (but not necessarily sufficient) condition for the existence of

an invariant region. The appearance of a definite pattern in cycles of

every M mappings of T" seems to be the chief indicator of the particular
mapping TMn(T) which exhibits the seemingly necessary twist mapping .
conditions.

To obtain the invariant region more accurately, we can first scan
all our initial T™° twist maps of the axis for all mutual intersections to
see whether or not we already may have found any of the 2M fixed points of
the TMn mapping of the axis. If not, we will have to make a crude mapping‘
of the axis for éoints whose radii coincide approximately with the outer
bounds of the region which exhibits the M-fold mapping patterns. in any
case, once approximate values for the two TMn fixed points on the axis
are found, their exact location can be determined as accurately as desired
by taking successively finer and finer grids of initial points. By
making repeated ™ mappings of both of these points for a total of (M-1)
times each, the entire cluster of 2M alternating hyperbolic and elliptic
TMn satellite fixed points can be located. 'These will bound the invariant
region. |

We now make some preliminary short-period TMn stroboscopic mappings
(perhaps for 50 to 100 strobe: periods) of a series of points on the axis
and inside the cluster of '1‘Mn satellite points. These mappings will

show the elliptical character of the inner motions, plus the sense of
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their stroboscopic rotations (which reverse outside the region). If, in
fact, we map a coarse grid of inner axis points which extend téwards the
2Mn elliptic fixed point on that axis, we will find that those grid points
farthest from the TMn fixed point will move nearly elliptically around the
inner region in one direction. Grid points closer to the T™ fixed point
will move outward around that elliptic fixed point itself, in an opposite
sense., By taking finer and finer grids we can locate (to the accuracy of
the computer) the approximate borderline between these motions. Now,
longer~period stroboscopic mappings (e.g. for 500 to 1000 strobe periods of
TMn) of two points on opposite sides of this borderline will trace out both
the inner union of hyperbolic invariant curves (if we use TMn printouts),
plus all the outer hyperbélic invariant curves surrounding the M elliptical
cells or "islands"™ (if we use ™ printouts). The union of these (M#l)
curves will be the one continuous doubly=-periodic invariant curve of TMn
which bounds the invariant region, in the limit that our two initial

points approach the inner invariant curve.

All of the preceding steps can be carried out quickly and efficiently
utilizing only a moderately accurate computer and a numerical integration
routine (such as our Fortran program included in the second appendix). In
special cases some numerical analysis may be necessary to obtain sufficient
accuracy for the longer-period stroboscopic mappings (needed to generate
the actuél closéd invariant curve). But in general tﬁe preceding methods
should enable one to easily and relatively accurately determine the
invariant regions and hence the stroboscopic stability of any particular
solution (fixed point) of a particular differential equation.

If more detailed proof of the stroboscopic stability of a particular
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solution is desired, then we must study carefully the hyperbolic invariant
curves of all T mappings (at least up to m=M) of a global region around
our particular fixed point° By mapping the inner and outer hyperbolic
invariant curves ""layer by layer” (i.e. for consecutive values of m), we
can check for intersections of these consecutive T~ invariant curves.
Thus we can gradually exhibit the mechanisms or "channels" whereby points
can escape to infinity from-regions close to our particulér fixed point.
After 'peeling off" each successive "layer" until we reach one layer whose
TMn hyéerbolic invariant curves do not intersect those of the next outer
layer, we can conclude that the escape mechanism no longer holds for this
layer. (That is, the hyperbolic invariant curves of thé‘Tmn mapping
develop no oscillations with which to carxry points out to infinity.)

To explieitly demonstrate the non-oscillatory behavior of these
TMn hyperboliéiiﬁvariant curves would require more accuracy still. How-
ever, this seems not to be important for our conclusion that the union
of the hyperbolic invariant curves of the TMn mapping isolated above will
therefore form the continuous, closed, doubly-periodic boundary of an

invariant region of absolute stroboscopic stability.
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Iv. APPENDIX ~-- ANALYSIS

A. Integration of the equations of motion

The first integral of equation (20), when P=p, and xa is an intercept

on the X-axis, is simply
2
@x/at)’ + Bp_ X' = p_ X! >0 . (35)

A half-period of motion described by this equation in phase-space is an arc

of a duasiwellipse'which intersects the X-axis at xa and is concave inward.

Similarly when p=-p, and X, is another X-axis intercept, the first integral

of equﬁﬁion (20) is

2 4 4
(dx/de)* - yp_ X' = <hp_ X, <0 . (36)

A half-period of motion described by this equation in phase-space is an

arc of a quasi-hyperbola which intersects the X-axis at X, and is concave

outward. Finally when P=-P, and ic is an intercept on the X-axis, the

first integral of equation (20) is

2 1 4 22 1 4
(dx/dt)” = Z'Rox = Xc =3 P, >0 (37)

where ¢ is a real constant. Again a half-period of the motion is an arc

) » L ]
of a quasi-hyperbola which now intersects the X-axis at Xc and is also
concave outward. Notice that a transition must occur between the last two

= (0, i.e. when

X= + ,po/Z 2 . (38)

The motion described by this last equation consists of two parabolas

types.of quasi-hyperbolic motion whenever ﬁz - %pox4

through the origin in phase-space. It reveals that the origin is a

parabolic (nodal) fixed point of equation (20).
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Equations (35), (36), and (37) above can be reduced to a standard form
o2 ' 4
9" = % C,(1-q) (39)
where Ci is Xa"xb’ or c respectively. This standard form can be integrated
in terms of the Jacobian elliptic functions snu, cnu, and dnu, This inte-

13/

gration has been done by Bartlett==", and the resulting solutions for the

three basic types of motion considered above are reproduced here.

Quasi-Elliptic Case (QE Motion):

X = X, cnu (40a)
') 2 .
X== ‘/po X‘ snu dnu (40b)

u = ’po Xt (40¢)

Quasi-Hyperbolic Case I (QH I Motion):

X = Xb/cnu (41a)
x= [p Xi snu dnu/cn’u (41b5
u = \p, Xb t (41cj

Quasi-Hyperbolic Case II {(QH II Motion):

chlz snu/(1’+ cnu) (42a)

X =
X = ‘,90/2 c2 dnu/(1 + cnu) . (42b)
u =

’po ct (42¢)

A number of theoretical predictions based on these results can be made

about the general properties of the motionlé/

, but we will not dwell on
them here. Instead we will go directly to the more specific problem of
numerically calculating many highly accurate solutions (X(t),i(t)) from

any arbitrary set of initial conditions (Xi,ii),
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B. Jacobian elligtic functions
The first obvious problem in doing our numerical calculations is one
of obtaining accurate tables of the Jacobian elliptic functions snu, cnu,
and dnu. Each of these functions can be written as products and quotients
of the four Jacobian Theta functions, which in turn are expressible as
infinite series, The resulting formulas, taken from the Smithsonian Elliptic

20/

Function Tables= , are reproduced here for reference.

6,(0,9) 6, (v,0)
snu = 5;?575§ x 5;2;:;3 (43>
6,(0,9) 8,(v,q)
cnu = m X m (44)
6,0,9) 93(v,q)
dau = 5575737 x 3:2;7;3 (45)
where
eo(v,q) =1 - 2q cos2Tv + 2q4 coS4TV = 2q9 cos6Tv + ... (46)
91(v,q) = sinTv - qz sih3ﬂ§ + q6 sin5mnv - q12 sin7mv + ...  (47)
92(v,q) = cosTiv + q2 cos3Tv + q6 cosS5Tv + q12 cosSITV + ... (48)
6,(v,q) = 1 + 2q cos2mv + 2q* coshmv + 2¢° cos6m + ... (49)
with
v = u/2K (50)
and
K = 1.854074677301372. ..
q = 0.04321391826377225... (51)

™= 3.14159265358979323846... -
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Since highly accurate routines exist for the calculation of the circular
functions used above, these formulas are admirably suited to a high-speed,
highly accurate digital computer such as the Illiac II.

In our work, tables for the elliptic functions snu, cnu, and dnu are
calculated and stored by the computer in terms of the "angular" argument b,
where

u = K(b/90) (52)

so that

v = b/180 . (53)

The tables.are calculated for the first quadrant values of b (i.e. for

0;0 <b <90.0) in steps of 0.1 in b. Using the periodic proéerties of

the elliptic funct;onsk(eogc snu and cnu are analogous to sinu and cosu,
with K playing the role of T/2) and using the first quadrant tables calcu-
lated above, we can easily obtain any of the elliptic functional values for
the full range 0 < u < 4K. For example, it will be necessary to calculate
and store a table of values of the function

S(u) = snu/ (1 + cnu) (54)

for the range 0 < u < 3K/2. For the range 0 <u <K it is a triviai calcu-
lation. For the range K < u < 3K/2 the table is assembled by calculating
the function snu/(chnu) starting with the u=K end of the first quadrant
tables and going backwards toward u=K/2 (i.e. b=45.0). These results are
then stored as S(u) starting at u=K and going forwards toward u=3K/2
(i.e. b=145.0).

At this point we should remark that if only a few values of the
elliptic functions are needed, it would be most efficient to use equations

(43) throﬁgh (53) each time the need arose. However for an inordinately
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large number of required values (e.g. as many as 105 per trajectory, as in
the present work), it becomes more efficient time-wise to construct rela-
tively small, accurate tables and then use an accﬁfate (nonlinear) interpo-
lation routine. In this work we make use of a Lagrange six~pointh(equa1

21/

interval) interpolation routine~=', which has an average executionvtime of
375 microseconds per entry on the IBMP7694 computer. This method utilizes
the three nearest table entries on each side of the input value of u and then
interpolates the (elliptid) functional value corresponding to u from a sixth-
order fit of the 6 tabuiated functional values. The results are then nearly
as accurate as if they had been calculaﬁed from the original infinite séries
expressions, It should be noted that this method allows us to use relatively
small tables (our tables contained 900 entries for the range 0 < u <K) and

still obtain highly accurate interpolations. For a small computer memory

core this efficiency is essential.

C. Inversion of elliptic functions

A second major problem which we will face in the actual calculations
is that of obtaining accurate values for the inverted Jacobian glliptic
functions. Instead of using the obvious elliptic integrals (i.e. the
formal inversions of the elliptic functions) to calculate still more tables,
we will consider several alternatives which are more efficient with regard
to saving time and memory core. One alternativé is to adapt a Lagrangian
six-point (unequal interval) interpolation routine to the calculations.
This approach is the desirable one for highest accuracy and overall efficiency.
In the present work, however, it has been more expédient to follow a dif-
ferent approach, one of approximation and iteration. From equations

(40a,b,c), (4la,b,c), and (42a,b,c) for the three different types of motion
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it is seen that we only have to invert cnu (for both QE and QH I Motions)
and the S(u) = snu/(1+chu) function (for QH II Motion only).

Given some value of cnu, which we wish to invert in oxrder to obtain
uss let us quickly scan our cnu table and determine between which two entries

our value of cnu, lies. Then let us choose the one with the smaller b value,

call it b = 90u°/K (vhere u < u, is the nearest smaller value of u, with

i

enu | > cnug the nearest larger value of cnu). Now let us write a Taylor

expansion for cnu, about the point cnu, . Using the properties of the elliptic

22/

functions—' we obtain

3,2 2.3 5 2, b
cnu;= £ - goA - 1/2 £47 + 1/2 gofoA + 1/8(f0~2fogo)A + ooo

(55)
where
fo = cnu
g, = snu  dnu_ (56)
A= (uinuo) .

For the first approximation we neglect all nonlinear terms and obtain
61 = (fowcnui)/gO . (57)

Neglecting terms beyond Az and using A1 in the second-order term, we obtain

the second-order approximation

8, =4 - (ngf)/zgo n (58)

Similarly we obtain the third-order approximation
_ 2,3 6,3 2 5, A3
4, = 4, + %foAQ (fodl)/Zgo + (foA1A2)/Zgo + oeeo . (59)

Given cnu, and having chosen the nearby smaller base value u, we can readily

calculate first Al’ then AQ, and finally Ago The third-order approximation
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for ug is then

Uiy = Uy + AB . (60)

In the second case of inversion, if we are given a value for the
function S(ui) = snui/(1+cnui) and we wish to invert it to obtain u., we
can‘proceed as follows. We first make a Taylor expansion about the point

u, (chosen as before with u, < u, but now with S(uo) < S(ui))and obtain

3,2 2 .3 2 5, 4
S(u) = £ + goA + %EOA + %fogoA + (3f g + 3fo/4)A /24 + ...
' (61)
where now
fo = snu°/(1+cnuo) = S(uo)
g, = dnuo/(1+cnuo) (62)
= (uiwuo) .

Analogous to the case of the cnu, inversion, we can invert this expansion by

i

means of successive approximations to obtain

8, = (8(uy) = £ )/g, (63)

b, = & - (E0D ke, (64)
b, =8, - REAED + (fgaf)/ezgf; + (8, 0)/8g + ... . (65)

Given S(ui) = snui/(1+cnui) we can readily calculate Al’ then AZ’ and finally

A3, yielding the third-order approximation for u, as in equation (60).

i

In the special case that u,= 0 or u,= K (the ends of the table) we can
simplify our original expansions for enu, and S(ui) given in equations (55)
and (61). Recalling that sn0=0 and cnO=dnO=l, we obtain the third-order

expressions

uig = \12(1 - cnui) ~ for u = 0, (66a)
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and ugq= K - J51 cnu, for u,= K (66b)
also U, q= ZS(ui) for u = 0, (67a)
and U5 =K - \/7 a - \[250)17)  foru =K. (67b)

Before we start the calculations we can see that our above successive

approximations for the Ai in the case of the cnu, inversion do not converge

i
as u_ - 0. This divergence is due td the presence of snu in the denbminators
of all of the expressions. $8ince the approximations are increasingly

accurate toward the middle of the tables, it is clear that we must devise an

accurate (converging) approximation for the case u, = 0 in the cnu, inversion.
To this end we make use of a direct expansion for cnu in powers of uzg/:
cnu =1 = ¥u? + u*/8 - 3u%/80 + ... . (68)
Forming the quotient ,
_ 1 = cnu %uz - u4/8 + 3u6/80
R = e = 2, & 6 (69)
2 - %" +u’/8 - 3u /80
and performing the indicated long-division, we obtain
R(u) = 1 - cnu _ gi + u6 + 7u8 + (70)
1 + cnu 4 320 1280 tee e :

If we drop all terms higher than uz we get the first-order approximation for
u? to be
i

uil = 4(1 - cnui)/(l + cnui) . (71)

Inserting this value in the two higher-order terms in equation (70) and

solving for the resulting approximation, we obtain
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2 3 4
kuiz = R(ui) had R (ui)/s = 7R (ui)ls ® s00 o (72) ‘
When u;, 0 both sides of the last equation converge to zero, so
that we have a valid expression for small u, in terms of the given cnu, value.
When u, gets larger, this expression will become decreasingly accurate. On

i

the other hand, our original equations for cnu, inversion (equations (56) to
(60)) will become increasingly accurate. Clearlf there will be some cross-
over point between the accuracies of the two inversion methods, and we will
need to know this point if we are to use both methods for the full range of
the table values., To find this crossover point we must do some hand calcula-
tions (faster than writing a small computer program in this case). We can
select, for example, an integral value of bi and then take the accurate
table value for the associated cnu = cn(Kb,/90). Next we can invert this
cnu, value using'éggg inversion methods. These results for Usg (ox uiZ)

can then be compared with the original value of u = (Kbi/90)° Thus we can
tabulate the error Ab = Ibi - biBI as a function of the original bi for
both inversion methods. A semi-log plot of these results is shown in
Figure 12, Curve B is the error plot for the original inversion method,
while curve A is for the second method for small angles. From this plot

we find the crossover value of bi as

bc= 18.2 . (73)

In our calculations we use the original cnu, inversion method (equations

(56) to (60)), for bi > 18.2 and the second inversion method of equation (72)

for b, < 18.2. Note that the maximum error in u,, will then be about 10~6

i3

when bi= bc°
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Figure 12,

Numerical errors arising in two methods
for the inversion of Jacobian elliptic

functions.
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In order to obtain more accurate inversions than the above usq, We
now add an iteration process. After inverting cnu, or S(ui) to obtain
the approximate value of uq (ox “iz) we turn around and calculate the cor-
responding value of cnu, 5 or S(uiB) using the accurate Lagrangian interpo-
lation routine and our coriginal tables. Tﬁe resulting value can then be
compared with the given value of cau, or S(ui)~ that we initially tried to

invert. If |cnu,, - cnuil <E or ls(ui3) - S(ui)| < E, where E is some

i3
preset error limitation, then we can regard U g (or uiz) as close enough to
ug for our purposes, In our work we eventually set E = 10w12°

However, if the error is greater than E we can make a new estimate

for uy by expanding cnu, ox S(ui) in a Taylor series about U;q OF Ugy, namely

cnu, =’cnu13 - snuisdnui3 (ui - ui3) + ooe (74)
and
dnui3
= 8¢{ i -
8(u,) (uiB) + T ¥ enuj, (u; “13) + .o . (75)

p

Solving each of these equation for u, we obtain

(cnu - cnui)

i3

.o +
i3 snui3dnu13

u = u

i4 R (76)

(5Cuy) - 8(u;3)) (1 + cnu )

= ui3 + dnu_ + o8 (77)
i3

u

ig4

as the next approximations for the inversions of cnug

3 or u,, are not zero). This procedure can be repeated

and S(di) respectively
(provided that u;
over and over, again until the desired accuracy is achieved. 1In practice

it has not been necessary to use these corrections more than once.
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Although the previous analysis should be complete and contain no
sources for computational errors (greater than 10°12), one final error did
arise, This error manifested itself in the eighth decimal place after
about 105 quarter-period calculations, but only for a few random initial
conditions. 1Its effects were observed as random discontinuities in certain
plots that should have been smooth ones. After many careful hand-calcula-
tions, the error was tracked down to the random truncation error in the
13th decimal place by the Illiac II computer! This seemingly insignificant
computer "fact~of~1ife" has overwhelming effects on the cnui'inversion pro-

cess when cnu, is very close to one. If under QE or QH I motion we have

Xi.:'xa or Xb within about one part in 1013, then the ratio cnu, = Xi/Xa or

cnu, = xb/xi will be about 1.0 to the same accuracy. But the computer

would sometimes call this exactly 1.000;,., while at other times it would

1

truncate it to 0.999... =1 = 10" 3 (this is at the limit of its accuracy).

Again this may seem inconsequential, but when we look at the inversions

of these slightly different cnu, values we find that cnml(l.O) = 0,00

i
while cnwl(l,o - 10“13)'; 10m7. So suddenly we see the cause of the random

discontinuities!
To overcome this problem we refer back to equations (35) and (36) for

Xa and Xb in terms of the initial coordinates X, and ii’ Factéring these

i

expressions and expanding them by means of the binomial theorem, we obtain

respectively

X_ =X (148)% = X (1 + %8 - 367/32 + ...) (78)
and

X, = X (1-8)% = X (1 - %8 + 567/32 = ...) , 79)
where “

s2 4
$ = 2Xi/7poxi <<1. (80)
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From equations (40a) and (4la) we obtain

cnu = Xi/Xa = (L - %8 + 362/32 = ...) for QB (81)

-.and

cnu = Xb/Xi = (1 - %8 + 562/32 - ...) for QLI . (82)

Thus to first-order in 8§ (fourth-order in Xi) we obtain for both QE and QH I
motions
cnu= 1 ~%8 . (83)

Since our given value of cnug differed from 1.0 by about 10’13, the above

approximation to first-order in § is justified. Note that this value for
cnu, requires u, = 0 in our cnu, inversion routines. Then using equation (66a)

for u,, when u = 0 we obtain
i3 o

u, = J20k8) = \[8./2 (84)
or
) 2
ua = * Xi/( p, X; ) (for uo=70)a (85)
Thus whenever
1.0 > cou, > en(K/900) (86)

(where cn(K/900) is the first table entry for b = 0.1), the value of U4
would be calculated directly from (Xi,ii) using equation (85), thus bypassing

the regular inversion routines.

D. Piecewise calculations

Let us now turn to the actual procedures for the numerical calcula-
tions. In order to limit the amount of computations involved, we first

choose fixed numerical values for our two parameters P, and T, namely
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p, = 0.037 and 7 =6.0. (87)

These are arbitrarily chosen values, but they will generate solutions which
can be scaled (both in phase-space and in time) in order to yield solutions
for other values of P, and T. For more general equations with‘nonmscaling
parameters, or for non-integrable equations which possess some constants

of the motion (e.g. the energy), we would have to use different values for
those parameters or constants of the motion and calculate all the cox-
responding solutions. A complete representation of the‘structure of periodic
solutions to the equations could then be obtained by plotting the phase-
space trajectories for many different values of the parameters or constants
of the motion. Treating these parameters then as continuous variables, we
could thus generate sets of '"eigensurfaces' of solutions in phase-parameter
sPaceggj, But for our equation (20) we neéd select only one value for the
parameters,

Since our numerical calculations will begin at t=0, it is clear from
our definition of p(t) in equation (21) that for the fifst quarter-period
(1/4 = 1.5) we will have p(t) = P, > 0 and hence a quasi-elliptical (QE)
motion. Then for the next half-period (t/2 = 3.0) we will have p(t) = “p, <0
and hence a quasi-hyperbolic (QH I or QH II) motion. Next will féliow another
half-period of QE motion, and so on for as long as we wish to calculate.

A simple index countef can be employed to keep track of the sign of p(t) as
a function of the number of quarter-periods of elapsed time. Néte that we
could have defined p(t) so that p(0) = -pé instead of +p, simply by shifting
our p(t) by a half-period in time. Then the motion would have begun as QH I
or QH II motion for the first quarter-period. We have arbitrarily chosen

p(t) here so that we will begin with QE motion at t=0.
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Before presenting a summary of the program logic for the computer
calculations, it will'be to our advantage to discuss in detail a few
typical solutions for the possible motions. These will then illustrate the
various features of the computational techﬁiqueso Let us first choose some
set of initial coordinates (Xiyii) in our two-dimensional phase-space, for

t=0. (In our program we make use of the polar coordinates r, and Bi as

i

input variables, where xi= r, cosf, and ii= T sineio) Specifically, let

i i i

us choose this initial phase-space point to lie somewhere in the first
quadrant and near the positive X-axis. This choice is not necessary in the
general calculations.

Using the initial coordinates (Xiyii) we can calculate the X-axis
intercept Xa from the first integral for QE motion, given in equation (35).

The result for Xi #0 is

- 22 bk
X, +(2X/p, + X)) 2 X, . (88)

{(The case when xi=‘0 is discussed in the next section.) Next, using
equations (40c) and then (40a) we can compute the time it would take to go

from (Xi,ii) to (Xa,o)y namely

-1
t, = ( \/Eo—' xa) en”L (/X)) 20, (89)

Now if ta= 1.5 then the initial QE motion would just be completed at (Xa,,O)°
If, however, ta < 1.5 then the motion will continue on beyond (below) the
X-axis for a time interval tls (L.5 = ta) > 0. To find the final coordinates

(when t = 1.5) we simply use (Adc) and then (40a) and (40b). Thus

X1 = Xa cnu, >0 (90a)

1] 2
Xl = = ’po Xa snuldnu1 <0 (90b)
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where

u, = ’po Xa t1 >0 . (90¢)

If instead ta > 1.5 then the QE motion will fall short -of (or above) the

X-axis by the time interval t, = (1.5 - £ ) <0. With t <0 we clearly

1
have v, < 0 also. From the symmetry properties of the elliptic functions

(sn(-u) = =snu; cn(~u) = cnu; dn(~u) = dnu) we see that for Uy < 0 we have

Xl > 0 and also il > 0. The magnitudes of Xl

equations (90a) and (90b). These coordinates, then, are simply a reflection

and il are found by using

in the X-axis of the coordinates of the motion for an equal but positive
interval of'tl. Indeed, inspection of our original equation (20) readily
reveals that it is invariant under the time-reversed operation t = -t, as
well as under the space reflection operation X = =X, or under both simul-
taneousiy. This invariance follows from equation (20) plus the symmetry
property p(t) = p(~t) built into our periodic square-wave function in
equation (21).

Now that we have determined our phase-space coordinates (Xl,ﬁl) at the
end of the first quarter-period, we can calculate the next half~-period of
quasi-hyperbolic motion. From equations (36) and (37) we see that it will

be either QH I or QH II motion depending on our new initial coordinates

(Xl,il) satisfying the conditions:

1%, | < ‘[po/z xf for QH I motion (91)

or

|il| > /po/2 Xf for QH II motion. (92)

Note that if IilI = ‘/pO/Z Xi then the motion is parabolic (see the dis-

cussion of equation (38)).
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Let us assume first that the motion is QH I. Paralleling the QE

calculations we first find the intercept Xb on the X-axis

X = +(xi‘ - Zf(i/po)%f X (93)

b 1 7

The time to go from (Xl,il) to (xbgﬂ) would be

t, = ( \[E‘ xb>°1 cn"l(xb/xl) >0 . (94)

If t, = 3.0 then the QH I motion would be completed at the point (Xb,O)o
But if tb < 3.0 then the motion will go beyond (above) the X-axis for a
time interval t,= (3.0 - tb) > 0. The final coordinates (when t = 1.5 + 3.0 =

4,5) will thus be

X, = Xb/cnu2 >0 (95a)
X, = X2 snu,dnu /cnzu >0 (95b)
2 Py p SHUORY, 2

where

u, = "po Xb t2 . (95¢)

Similarly if tb 2 3.0 the motion will fall short of (or below) the X-axis

for a negative time interval t The final coordinates will still be cal=-

2°
culated from the abbﬁe equations, but now iz < 0.

For the next half-period the motion will be QE again. The calcula-
tions for (X3,i3) will take the same form as equations (88), (89), and (90)
except that (Xi,ii) will be replaced by (Xz,iz) and that (from now on) we
must subtractta from 3.0 instead of 1.5. Thus in the present case we must
calculate t3= (3.0 - ta)o 1f (xz,iz) had been in the first quadrant, then
we would obtain X, > 0, §3 <0 for t, >0 (or :':3 >0 for t, <0), If
(ngiz) had been in the fourth quadrant, a different result would be obtained:
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(X3,i3) would be in either the‘fourth or the third quadrant. We will return to
this case in the next section of this appendix.

But first let us consider the next hal f-period of quasi~hyperbolic
motiop to be QH II motion starting from initial coordinates (X3,f(3)° Let us
for the moment assuﬁe X, » 0 and i <0 (whigh required t

3 3 3
>0, iz >0). We proceed in a manner similar to the QE

> 0 plus the initial
requirement that X2
and QH I cases already discussed above. First we calculate the constant c2

from the first integral for QH II motion, equation (37):

. %
¢ = +(88/p, - 4XD . (96)

Notice that the absolute value of the X-axis intercept ic will be given by

x_| = ‘,poc4/8 < |%] . 97)

The time to go from (x39i3) to (0, »Iicl) would be
=1 =1
tc = ( ’po c) £ (1’2 X3/c) >0 (98)
where as before

f(u) = snu/(1 + cnu) .

(As mentioned before it is convenient to tabulate the function £(u) for

0 <u < 3K/2 in order to facilitate taking its inverse.) If t, =3.0 then
the QH II motion would be completed at (0, mlf(cl)o If however t, < 3.0 then
the motion will go beyond (or to the left of) the X-axis by a time interval
t4 = (3.0 = tc) which is positive. The final coordinates for this motion

will be
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X4 = - ]’c2/2 snuél(l + cnua) <0 (99a)
. [’_“'“ 2
X4 = - po/2 c dnu4/(1 + cnua) <0 (99b)

where

u, = ,po c t4 >0 (99¢)

and where the minus signs have been chosen to agree with QH II motion origi-
nating in the fourth quadrant (see the following section of this appendix).
If tc > 3.0 the motion will fall short (or to the right) of the X-axis for a

negative time interval t The final coordinates will Still be calculated

4°

from the above equations, but now X4 > 0.

E. Final coordinate signs

Now that we have discussed several typical motions for a particular
set of initial coordinates, it is clear that one problem vemains to be solved.
That problem is the unambiguous determination of signs for the final coordi-
nates of the QE, QH I, or QH II motions originating in any arbitrary quadrant
of the phase-plane.

The simplest way to calculate the final coordinates from any initial

coordinates is first to calculate the absolute values of all quantities

(e.g. Iic], [tc|9 'tal” |X4|g and Ii4| for the last case discussed). Then
we can attach the appropriate signs. These signs can be determined a priori
from a consideration of the general properties of motion. Let us look at

QE motion first. This motion is described in clockwise quésimelliptic arcs
about the origin, concave inward (see equation (88)). Thus if (xi,ii) is in
the first or third quadrant (i.e. if Xiii > 0) then the motion will be

towards the X-axis, with an intercept xao‘ Thus the results outlined in
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equations (88) to (90) will hold. That is, the sign of X, will equal the sign

1
of Xi’ while the sign of il will be equal or opposite to the sign of ii

according as ltal > 3,0 (or 1.5 in the first step only) or Ital <3.0. In
the special cases where (Xi,ii) is on the #X-axis, then we will have il <90

for Xi » 0, and X, >0 for Xi < 0.

1
1f Cxi,ii) is in the second or fourth quadrants (i.e. if xiii < 0) then

the motion will be in clockwise arcs away from the X~-axis, with an Xmaxié
intercept Xa now in past time. Thus Ital is just the time it would have taken -
to go from (Xa,O) on the axis to (Xi,f(i)° Therefore the total time from the
X-axis to the final point (Xl,il) will be the sum tl = (3.0 + ltal)q To get
the time it would ﬁake to go from (Xi,ii) to the X-axis (i.e. the axis

towards which the motion is directed), we can subtract Ital from the total

time Ta it wéuld take for a point to go from the X-axis initially to the

X-axis finally uﬁde; QE motion. To find Ta we use.equation (90a) and see

=0or u= [pXT=«K,.

@
that for X1= 0 (on the X-axis finally) we must have cnu 1 oXala

1
From equation (88) it is clear that for ii= 0 (on the X-axis initially) we

have X = X,, Thus the maximum time T, between axes under QE motion will be

1= K/( 5 xi) . (100)

We can therefore conclude that the sign of X, will be equal or opposite to

1
the sign of Xi corresponding to (Ta - Ital) > 3.0 or (Ta - ]tal) < 3.0. The

sign of X, will generally remain the same as the sign of ii” unless the motion

1
goes beyond the next quadrant, i.e. unless (ZTa - Ital) < 3.0, 1In the special

> ]
cases that (xi,xi) is on the #X-axis we see that |ta| = Ta above, so that

t1= (3.0 + Ta)° Then for ii < 0 we will generally have X, < 0 (unless

1

2T, < 3.0, in which case X, > 0), vhile the sign of X, will be equal or

1 1

opposite to the sign of ii corresponding to Ta > 3.0 or Ta< 3.0. For ii >0
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the results for the sign of i will still hold, but in general we now will

1

have X, > 0 (unless ZTa < 3,0, in which case X, < 0).

1 1

Next let us consider QH I motion., This motion is described in counter=-
clockwise quasi-hyperbolic arcs about the origin, concave outward (see equation

(93)). Thus if (Xi,ii) is in the second or fourth quadrants (i.e, if

xix < 0) then the motion will be towards the X-axis, with an intercept Xbo

Thus the results for the final coordinates will be those given in equations
(93) to (95), with the following signs. The sign of x2 will equal the sign

of Xig while the sign of X will be equal or opposite to the sign of ii cor=

2
responding to ltbl > 3.0 or ]tbl < 3.0. There is no yossible sign change for

X2 (as there is for QE motion) since the QH I motion is outward and asymptotic
to the characteristic straight lines of the quasi-hyperbola. On the other
hand, if (xi,}'ti) is in the first or third quadrants (i.e, if xiii > 0) or

if it is on the ix»axis (the iﬁwaxis is excluded by equation (91)) then the

motion will be away from the X-axis, with the intercept X_ now in past time.

b
That is, ltbl will be the time it would take to go from (xb,O) on the X-axis

to CKi,ii), Therefore the total time to move from the X-axis to the final

point (X,,X,) will be t,= (3.0 + |t |). Clearly the signs of X, and X, will

be equal to those of Xi and ii respectively (if ii= 0, then iz > 0 for Xi >0,

while X, < 0 for X, <0).

Finally let us consider QH II motion. This motion is described in
clockwise arcs about the origin, concave outward (see equation (97)), with
its intercept (ic) now on the X-axis. Thus for (Xi,ii) in the second or

fourth quadrants the motion is towards the X-axis . Analogous to the xiii <0

case for the QH I motion, the sign of i will equal the sign of ii” while

4

the sign of X, will be equal or opposite to the sign of X, corresponding to
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|t | >3.0 or |t | <3.0. Again it is impossible for the sign of X, to differ
from the sign of ii because the QH II motion ;rcs outward towards igfinityn
If now (Xi,ii) is in the first or third quadrants or if it is on the i§~axis
(the +X-axis is excluded by equation (92)), the motion will be away from the
i»axis, and so Itcl will be the time to go from (O,ic) on the X-axis to
(Xi,f(i)° Thus the total time to move from the %-axis to the final point
(X49i4) will be t4= (3.0 + ltcl)° Again, the signs of X4 and i4 will be equal
to those of xi and ii respectively; if xi= 0, then x4 >0 if ii > 0 while
X, <0 if X, <o.

In conclusion, it can be seen that the calculation of the final coordi-
nates of the motion is best done by computing only the magnitudes of the
necéésary quantities. Then a logical sign :outine based on the above results
can be constructeglo A simple test of the product (Xiii) plus a determination
of the EXEQ of motion involved will then simply and easily fix the signs of
the final coordinates. (Recall that the motion is QE if p(t) > 0, and QH I
or QH II according to equations (91) and (92) when p(t) < 0.) A summary of
all these sign results together with the piecewise computational steps

previously discussed are given in the beginning of the next appendix.



V. APPENDIX -- PROGRAMS

A. Summary of piecewise calculations and sign routines

Initial Tests: p(t) = +p, QE Motion

x| = + (2ii/po + x‘.l’)%
legl = dx | 5™ en™ iz l/1x, D
Ju, | = 'ESARLY
x| = [x,] en]u,|
Ik, | = 7y x% snlu, | anlu, |
I =

. K/ (x| [p.")

Case 1: (XiXi) >0

%

Use: t:1 = (3.0 =~ ltal) in third equation above;
Set: S8ign Xl = Sign Xi if t:1 < Ta ’

or 8ign Xl = =§ign X_i if t1 > Ta H

Set: Sign Xl = Sign Xi if tl <0 or t:1 > 2Ta ,
or Sign X1 = «-8ign X if 0< tl < 2Ta .

101
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Case II1: )'(i =0

%*
Uses t, = 3,0 in third equation above ;

1
%
Set: Sign Xl = Sign xi if Ta >3.0 ,
*
or Sign Xl = =§ign Xi if Ta < 3.0 .

Subcase 1: Xi >0

.
Set: )'cl <0 if 21 >3.0°,

. %*
or X »0 if 2'I.'a < 3.0 .

Subcase 2: X4 <0

L * ;
Set: X, >0 if 2T, > 3.0 ;

° t3
or X, <0 if ZTa <3.0.

i
%
Use: t1 = (3.0 + Ta) in third equation above ;
Set: Sign X ion X *
et: gn Xl = Sign Xi if . Ta >3.0 ,
. s [ . %
or Sign Xl = -Sign Xi if Ta <3.0 .
Subcase 1: l.(i <0
%
Sets Xl <0 if 2Ta > 3.0 ,
ox X >0 if 2T < 3.0 .
1 a
Subcase 2: 1.(1 >0
, %*
Set: Xl >0 if ZTa > 3.0 ,

or X. <0  if 2T <3.0".
1 ~ g <3
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Case IV: (xixi) <0

%*
Use: t, = (3.0 + ]tal) in third equation above ;

1

Set; S8ign xl = Sign Xi if t1 < Ta .
or Sign X1 = =Sign Xi ifr tl > Ta i
Set: SignX = Sign X, if £, <2T_,
or  Sign X, = -Sign X, if € >2T .

[Return to Initial Tests |

%*
(Use 1,5 instead of 3.0 for the first quarter-period of QE motion, plus the
last quarter-period of the motion if the total period of the solution is to

be an integer multiple of the period T).

Initial Tests: p(t) = “P,

2
liil < |p°/2 Xi

QH I Motion

- b 02, %
lxbl = + (X - 2X{/p )

-1 =1
Itbl = (lxbl {p,) cn (leI/IXiI)

l“zl = ,’Po bel |t2|

Ile = lxbl/cnluzl

2 2
Iizl = [p)'X, (snluzldnluzl)/cn ]uzl

L]
Case I: (xixi) >0

Use: t2 = (3.0 + |tb|) in third equation above;:

Set; Sign X, = Sign X

2 i

Sign X, .

and Sign iz



104

Case II: ii =0

Use; t2 = 3,0 in third equation above ;
Set: Sign Xz = 8ign Xi
and Xz >0 if Xi >0 ,
or X, <0 if X, <0 ,
2 i
Case III:; X, =0

Excluded (QH II Motion Only) .

o 2 <
Case 1IV: (xixi) 0

Use: t2 = (3.0 - Itbl) in third equation above ;

Set: Sign X2 = §Jign xi .
& L

and Sign X2 = =Sign xi if t, > o,
A »

or Sign x2 = 8ign Xi if t2 <0 .

LReturn to Initial Tests |

Initial Tests: [ p(t) = -p_

s 2
x| > },polz X7

QH II Motion

02
le| = + (8K2/p_ - 4x})*

ltel = del 3™ £ T 7]e))

where £(u) = snu/(1 + cnu)
lugl = [257 lel It

x| = ’c2/2 snlu, |/(1 + enfu,|)
'i4| = ’po/z & dnluai/(l + cn|u4|)‘



t, = (3.0 + |tc|) in fourth equation above;

Case I: (xixi) >0

Use:

Set; Sign X4 = §ign Xi
and

Case II: i

Sign X4 = 8ign X

i

=0

Excluded

Case II11: X

it

(QH I Motion Only).

i
Use: t4 = 3,0 1in fourth equation above ;
L] (]
Set: Sign X4 = 8Sign xi
[
and x4 >0 if Xi >0,
or X, <0 if X, <0 .
4 i
X,) <0
Case 1IV: ‘CKi i)
Use: t, = (3.0 - ItCI) in fourth equation above ;
3 o oy ° .
Set: Sign X4 = §Sign Xi
and Sign x4 = =Sign Xi if t, > 0,
or Sign X4 = §8ign xi if t4 <0.

,Return to Initial Tests1

105
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B. NICAP program for the Illiac II

Opening routines (only one entry per run)
Calling of library subroutines for input/output, Lagrangian 6-point
interpolation, arctangent, square root, cosine and sine functions;
SYSETC, TLOOP, QUAD1, QUAD2: Calculation and storage of Jacobian elliptic
function tables (snu = SNARRY, cnu = CNARRY, dnu = DNARRY, and

f(u) = snu/(1 + cnu) = SBYC).

Main program (EFPR3)

Input/output controls,various counters;
EFPRA: Conversion from input polar to cartesian coordinates.
ELOOP: Preparation for entry into QE Motion Loop.
HILOOP: Preparation for entry into QH I Motion Loop.
H2LOOP: Preparation for entry into QH II Motion Loop.
OP: Odtput thions with final coordinates, e.g. conversion back to polar
coordinates, calculation of special functions such as 46, Ar, and

the ratio r,/r, = RUCRIN.

Subroutines

ELLIP: Calculations for QE Motion.

HYP1: Calculations for QH 1 Motion.

HYP2: Calculations for QH II Motion.

NVERSl: cnu = CNARRY inversion (both methods).

NVERS2: f£(u) = SBYC inversion.

LOOKUP, LKAUX, AUXLK: Preparation of data for using the library subroutine
for the six-point Lagrangian interpolation of the tables (i.e. for the

direct lookup of off-table values).
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SIGNEA: Finalrcoordinate sign routine for QE Motion.
SIGNl1A: Final coordinate sign routine for QH I Motion,
SIGN2A. Final coordinate sign routine for QH II Motion.
STXCAL: Special subroutine to calculate the statistical properties of
certain functions (e.g. RUCRIN) for large numbers of solutions.
RDUM: Counter routine to allow recycling of calculations for multiples

m of the basic mapping period n.

Input parameters

XPERM: The X-coordinate of the point to be used as the origin of the
polar coordinates.

XDPERM: The X-coordinate of the point to be used as the origin of the
polar coordinates,

AMJOUT, AMJIN: The semi-major axes of two ellipses which form the
outer and inner boundaries respectively of the (elliptical) annular
region under study.

ECOUT, ECIN: The eccentricities of these two (outer and inner,
respectively) bounding ellipses.

AMJOR: The semi-major axis ao corresponding to the initial point in
phase=space being mapped.

DELRAD: An increment in a if a regular series of a values is desired.

RADFIN: The final a in the desired series of a values (may equal AMJOR).

PHINP: The original angle 90 corresponding to the initial point in phase-
space being mapped. |

DELPHI: An increment in 90 if a regular series of 90 values is desired.

ECCEN: The fixed eccentricity e, corresponding to the initial point in

phase-space being mapped.
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XMAX: The maximum value of X which a final coordinate is allowed to attain.
N: The integer number of periods of T of the basic ﬁapping (printout
every N periods). ‘
M: The integer number of multiples of the basic period N (M lines of
printout of N periods apiece).
P: The number of incremented values for 60 (the number of times DELPHI is

added for a given a; DELRAD is controlled by RADFIN).

Qutput parameters

Mil: The running counter for the number of multiples m of the basic
period n.

RUCRIN: The ratio of the mapped radius r, at the angle €, to the radius

1 1
r, of a standard ellipse (specified by AMJOR and ECCEN) at the same

angle 61,
LARGEG: The ratio of the mapped radius r; to the original radius r,.
F: Moser’'s A6 function = (91=9@)°
SMALLG: Moser’s Ar function = (rlwro)o

RAD: The mapped radius r, about (XPERM, XDPERM).

1

PHI: The mapped angle 6. about (XPERM, XDPERM).

1
X¥F: The mapped X-coordinate XI°
XDF: The mapped X-coordinate ilo
Q: The running counter for the number of increments P in the initial

0 .
angle o
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TPRINT
READ
LAG6 T
ATAN1
SQR1
Cos1
SIN1
SYSETC
*
* MO PAGE COUNT,
. M2 "LO0OPS?*,
] M4 FIXED POINT NUMBER, °N’'.
* M5 ORBITS, 'Mf,
* M6 pr.
L4 M7 Q.
* M8 USED ONCE ONLY, TO START OFF-AXIS IN ELLIP.
T M9 SAME AS M5 (M), BUT USED IN CALCULATIDONS.
* M10 SAME AS M6 (P}, BUY USED IN CALCULATIONS.
* ML1 OUTPUY COUNT.
®
CALL SYSETC
DECQL , 4 IGNORE,
CAD K
D1V 900.
STR SCALE
CAD 15,3,
STU SNARRY TABLE OF SN, CN, AND DN.
ADD 1.
STIR CNARRY SET INITIAL TABLE VALUES
STR DNARRY
CAD pSz
CALL SQR1
STR RPSZ
®
e
* RED RED RED RED RED RED RED RED
CSM 05900 LOOP COUNTER.
LFR 2:Q F2 = Q = QFASTY
CAD - QFAST |
rMPY Fl
STU F3
SFR 3,Q2
MpY F3 -
STU Q4 , Qeeq = Q4
rPY Fl — —_— -
STU Q¢ Qa6 = Q6
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MPY Fl
vPY QFAST
STU Q9 Q=9 = Q9
MPY Fl
MPY F3
STU Ql2 Qs#=12 = Ql2
ADD Q6
ADD Q2
ADD 1. Q12+Q6+Q2+1
STR cq GOES TO CQ
CAD Qs
ADD Q4
ADD QFAST _
ADD 1C»3,2048 Q9+Q4+Q+1/2
STR AQ. GOES 10 AQ
LFR 3,RINCR
TLOOP CAT RFAST
CALL  CGSs1
MPY Q «Q
STU F5 TO F5
CAD REASY
MPY 6.
CALL  COS)
MPY Qs * Q9
STU Eé 10 Fé
CAD RFAST
MPY L™
CALL  COs1
MpY Q4 *Q4
-ADD 10+3,2048 1/2
sus F5 ~QCOS(RINCR)-Q9#COS(6#RINCR)
sus Fé
MPY (]
STR BNQCQ TO BNQCQ
CAD REASY
MPY 5.
CALL  SINL
MPY Qé * Q6
STR FS .TO F5
CAD RFAST '
rMPY 3.



111

CALL SIN]
MPY Q2 * Q2
STU Eé 10 F6
CAD RFAST -
MPY 1.
CALL SIN1 :
MPY Q12 #Q12
STU F? T0 F7
CAD REASY
CALL SIN1
ADD FS Q6SIN(5sRINCR)
SUB. Fé -Q2SIN(3#RINCR)
suB F1? ~Q1l2SIN(7sRINCR)
MPY AQ #{Q94+Q4+4+Q+1/2)
cly BNQCQ BY Q4COS(4#RINCR)+1/2-
STR SNARRY+M0+901 ELLIPTIC SINE,
MPY FQ 1 ~{SNU#SIN{RINCR))
STR FS -Q6SIN(SRINCR) ROOTED
CAD. le
sus F5
CALL SdR1
STR CNARRY+MO+901 ELLIPTIC COSINE.
CAD 2e 2 — Q6SIN(S*RINCR) = 1/2
SUB ES ROQTED
Civ 2e
CALL SQR]
STIR DNARRY+MQ+901 ELLIPTIC TANGENT.
CAD RINCR
ASC _RFAST INCREMENT Rose
cJu ‘MO, TLOQP AND LOOP.
CSM 0,901
CAM 13 SNARRY
CAM 29:CNARRY
QUAD1 CAD 2+1,
ADD 1.
vID 1,1,
STR SBYC+MO+901
CcJu 0,QUAD1
CSM™ 0,801
CAM 1, SNARRY+899 )
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CAM 2, CNARRY+899
QUAD2 (S8 Zea
ADD l.
viD 1y
STR SBYC+M0+1702
SBM 1,1
SBM 29,1
cJu 0,QUAD2
FIL ;
%  MAIN PROGRAM-—--(EJLLIPTIC (F)IXED (P)OINT, (R)ED---
#* LOCPS = MODIFJIER 2
*
EFPR3 CAM 1.,READIN
CALL READ '
CAM 1.CTOFF
CALL READ
CAM 1:PRINTIN
CALL PRINT
CAM 1:CTOFFP
CALL PRINT
- CSHM 0,41 PAGE COUNTER.
LFR S+SETUP
LRN 4,12
CSM 4 FIXED POINT NUMBER.
CSM B,.M5 JOTAL NUMBER OF ORBITS.
CAM Ts1 SET INITIAL VALUE OF Q.
SFR 5,SETUP SAVE INPUT COUNTERS.
CSM . 9M5
CAM 10 M6
CAM 11 SET INITIAL VALUE OF M{s)
SFR 6, COUNT 3,CO0UNT = D.
CAD 1553,
STU AVRUC
STU RMRUC
STU AVG
STU RMG
EFPRB CAM 1+HEAD
CALL PRINT
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CAD PHINP
STR PHIIN
EFPRA CALL ROUM

DECQL AMJOR,ECCEN,PHIIN,RADIN
CAD PHIIN

cIv 180.
__STR F3
CALL  COS1

MPY  RADIN

ADD XPERM

STR XINP
STR XIN
STIR XINS
STR XF
CAD F3
CALL SIN1

MPY RADIN

ADD XDPERM
STR XDINP

STR XDIN
SIR XDINS
STR XOF
CAD 15,3,
STU F

sTU SMALLG

SIU LARGEG

ADD 1.

STR RUCRIN
CAD RADIN

STR . RAD

CAD PHIIN

STR PHI
CAM 1.0UT

CALL PRINT

CSH LOOPS,1

CSN 8,1 FIRST ELLIPTIC ENTRY.
ELOOP CALL  ELLIPA
CALL QP

CJu LooPs,ELOOP
CSM LOOPS 2

CAM 8

CAD X

Cav XMAX
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TP CXMAX PRINT X, XDy THEN READ IN NEW
o CAD X
MPY Fl
STR F3
CAD PSZ
cClv 2.
CALL SQR1 ;
¥PY F2
CAV XC
N H2L00P
H1LOOP CALL HYP1A
CALL _O°P
*
L J
cJu LCOPS,H1LOOP
CSM LCOPS, 2
TRA ELOCP
H2L00P CALL  HYP2A
CALL oO°F
*
*
CJdu_ LCOPS,H2LO0P
cSM LOOPS,2
TRA ELOOP
op SFR 4,0PBSS SAVE RETURN.
cJz LOOPS, 0PC JUMP IF ON SECOND LOQP TQ QUTP
CAC XZERO
SIR XIN
CAD XCZERQO
STR XCIN
CAD TBY4
ASC T
cJu 4,0PX JUMP IF NO CUTPUT IS DESIRED.
LDM 4,SETUP RESET OUTPUT COUNTER. L
CAD X
SuB XPERM
STR DELX
CAD XL
sus XDPERM
STR DELXD o
CAD RAC
STR RADOLD
CAD PHI
SIR PHICLD
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CAD DELX

MPY Fl —
STR FC
CAD DELXD
MpPY Fl
ADD FQ
CALL SQR1
STR RAD
CAD DELXD
Clv DELX
CALL ATAN1
C1v PI
STR PHI

CALL PHIST
LFR 6, COUNT

ADM 11,1 INCREMENT RUNNING COUNTER (M11)
SER 6 COQUNT

CALL RLCUM

DECQL AMJORLECCEN,PHI yRADNENW

CAD RAD

Civ RADNEW

STR RUCRIN
ASC AVRUC

CAD RUCRIN
MPY EFl

ASC RMRUC

CALL ROUM
CECOL AMIOUTL.ECOUT.PHILROUT

CALL ROUM
CECQL AMJINLECIN,PHI,RIN

CAD RAD
- SUB ROUT
Ty 0PG.

CAD 1593,

STU LARGEG

TRA OPF
0PG CAD RAD
SUB RCUT
CAvV 15¢3,
STR F2

CAD ROUT
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SUB RIN L

CAY 15:3,

~STR F3

vPY F2

MPY 2e

STR F1

CAD RAD

sus RIN

CAY 1503,

ADD F2

sup F3.

cIv F7

SIR EQ

CAD RAD

Sus ROUT

MPY FQC

STR LARGEG
OPF CAD PHI

Sug PHIOLD

P OPD

ADD. 360,

oPD STR F

CAD RAD
SUB RADOLD

STR SMALLG

CAD X 7
STR XF

CAD XC

STR XDF

CAD LARGEG

ASC AVG

CAD LARGEG .

MPY Fl

ASC RMG

JNM 0,0PE |

CAM 1,HEAD HEAD TOP OF PAGE.

CALL PRINT
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CSM 0544 OUTPUT PAGE COUNTER.
OPE CAM 1,0UT
CALL PRINT T
ADM 0,2 UPDATE PAGE COUNTER.
CAD X
EAV XMAX - - e
TP CXMAX PRINT X, XD, THEN READ IN NEW C
cJz 5,0PA
oPX LDM 3,0PBSS RESTORE RETURN.
LDM LOOPS,0PBSS RESTORE LOOP COUNTER.
JLH 3y, EXIT.
_OPA _ LFR 63 COUNT e
CAC AVRUC
CIV Mg,
STR AVGR
VPY FO
STR F3
CAD RMRUC
IV M9,
CALL  SQR1l
STR RMSR
MPY FO
suB F3
CALL  SQR1
STR S IGMAR
CAD AVG
clv MS, -
STR AVGG .
MPY FO
STIR F3
CAD RMG
cCIv MG,
CALL  SQR1
SR RMSG
¥PY  FQ -
sus F3
CALL  SQR1
STR SIGMAG
CAM 1, SMOUT1
CALL  PRINT
ADM 0,8 INCREMENT PAGE COUNTER.
CAD 15,3,
_STU AVRUC
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STU RMRUC

STU AVG

STU RMG

CAM 84M7-M6
JNM 8,0P8

TRA STXCAL
apg CAD DELRAD

MPY DELPHI
TU OPH

CAD DELRAD
ASC AMJOR

oPH . CAD DELPHI
ASC PHIIN

LFR 54SETUP
ADM 121 '

SFR 59SETUP
LFR 65 COUNT

CAM 11
SER 62 COUNT
CAM 1,SKIpP

CALL PRINT

ADM 013 INCREMENT PAGE COUNTER.
TRA EFPRA
opC CAD X
STR XIN
STR XINS
CAD XC'
STR XCIN
STR XCINS
TRA QP X

OPBSS BSS 1

®

ELLIPA SFR 4,ELLBSS SAVE RETURN.

SFR 59ELLBSS+]
CJz 8.ELLIPG

cJz LCOPS,ELLIPC
ELLIPG CAD XIN

MPY XDIN
STR FQ
CAv 1543,
viD EQ

TOR ELLIPE
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TRA ELLIPF

ELLIPE CSB l. R

ELLIPE SIR MCT LON
CAD - XIN
MPY Fl
MPY Fl
MPY Fl. 4
SIR E7

ELLIPB CAD XDIN
MPY Fl
MPY 2.
Clv PSZ
STR DELONE
clv F1
STR DELTWO
sus RERROR
IP ELLIPQ
CAD DELTWO APPROXS. FOR WHEN XZERD IS NEAR
CIV 4, '
ADD 1.
MPY XIN
STR XZERO
CALL SIGNEA
CAD DELTWO
NDV 4,
ADD 1.
STIR TSTCNU
CAD DELTWO

_CIv 2. ‘
CALL SQR1
STR 1]
TRA ELLIPR
_ELLIPQ CAD DELONE

ADDC F1
CALL _ SQR1
CALL SQR1
STR XZERO X AT ABCISSA

. 4
CALL  SIGNEA
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. .CAD XZERO

vViD XIN
STR TSTCNU

*

CALL NVERS]

»
L]

ELLIPR CAD 15,3,
STU XDZERD

CAD RPSZ

MPY XZERO

vio U '

CAY 1543,

STR TZERO - TIME TO ABCISSA
*

MPY MCTION

SuB TBY4

STN T NEW TIME

ELLIPC CAD 1

rPY XZERO

STR F7
CAD RPSZ
vPY F1

STR JESTUY

CALL LCOKUP

CAC CNU
@
MPY XZERO
SIR X : NEW X
* .
CALL _ SIGNEB
#*
+*
*
&*
CAD RPSZ
MPY XZERO i L
vPY Fl
MPY SNU
NPY DNU

STN Xe NEW XD
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. CALL  SIGNEC -
CAD ECCT
SAM MCTION
JIM 8,ELLIPH
JuM LCOPS, ELLIPD
ELLIPH CAD XINS
MPY XCINS
1P ELLIPD
CAD PSI
*
STR T
*
[ J
_ELLIPD LFR 4,ELLBSS DELETE ELLIPD LABEL FOR PH (PRIM
LFR 5,ELLBSS+1
JLH 343 EXIT
ELLBSS BSS 2
#*
ASSIGN DELONE,DELTWO
RERROR CEC 1.0E-07
HYP1A _ SFR 4,HY1BSS SAVE RETURN.
SFR 5,HY1BSS+1
cJZ LOOPS ,HYPC
CAD  XIN
NPY XDIN
STR FC
CAV 15,3,
VID FGO
STR MOTION
CAD XIN 7
MPY Fl
MPY Fl
MPY Fl
STR F7
HYP1B CAD XCIN
MPY £l
NPY 2.
NDV PSZ
STR DELONE
ADV F1 ) B
STR DELTWO
SUB RERROR
P HYP1Q
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CAD DELTHWO APPROXS. FOR WHEN XZERO IS NEAR
NDV 4.
ADD 1.
STR TSTCNU
" MPY XIN
STR XZERO
CALL SIGN1A
CAD DELTWO
Ciy 2.
CALL SQR1
STR U
IRA HYP1R
HYP1Q CAD DELONE
ADD F71
Cay 15,3,
CALL SQR1
CALL SCR1
SIR XZERD X AT ABCISSA
»
CALL SIGN1A
CAD XZERO
Clyv XIN
STR TSTCNU
*
CALL NVERS1
*
®
HYPIR CAC 1543,
STU XDZERO
CAD RPSZ
MPY XZERQ __
VvID U
CAY 143y
STR TZEROD TIME TO ABCISSA
»
MPY MCTION
ADD TBY4
STIR T
HYP1C CAD T
.2
MPY XZEROD
— STR F1
CAD RPSZ
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vPY F7
STR TESTU
*
CALL  LOOKUP
%
[
CAC XZERO
LIV CNU
STR X NEW X
*
CALL SICN1B
*
o
*
»
CAD XZERO
MPY Fl
MPY SNU
MPY DNU
STR F1
CAD RPSZ
~PY F7
Cly CNU
CIV Fl
STR XD NEW XD
*
CALL SIGN1C
CAD H10CTY
SAM MOTION
%
{ ]
LFR 4,HY1BSS RESTORE RETURN.
LFR 5S,HY1BSS+1
JLH a2 EXIT
HY1BSS B8SS 2
*
HYPZ2A SFR 4 4HY2BSS SAVE RETURN.
SFR 5,HY2BSS+1
cJz LCOPS,HYP2C
CAC XIN
MPY XDIN
STIR FQ
CAvV 15,3,
e vig FQ .
STR MCTION
_._ _CAD XIN
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¥PY Fl
MPY  F1
#PY Fl
MPY 4.
STN F1
CAD XOIN
MPY Fl
¥PY 8.
Civ PSZ
ACD F1
CAv 15:3,
CALL __ SGR1
CALL SQR1
STR____F6 Fo = A
CAD F1
MPY PSZ
Civ 8.
STR F1
HYP28 CAD XCIN
MPY Fl
ADD F1
CAV 15:3,
CALL SCR1
STR XDZERO XD AT ORDINATE
*
CALL SIGN2A
CAD 2.
CALL SQR1
MPY XIN
Clv Fé
STR TSTSBL
CAvV 15,3,
CALL NVERS?2
*
* —_
CAD 15¢3,
STU XZERQO
CAD RPSZ
VID U
Civ Fé
STR TZERO TIME TO ORDINATE
°
MPY MCTION
ADD TBY4
STR T
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HYP2C CAD RPSZ
MpY T
MPY Fé
STR TESTU
 J
CALL LGOKUP
CAD CNU
*
ADC l.
STR F1
CAD 2.
CALL SGR1 °
MpPY F1
STR F1
CAD SNU
MPY Fé
CIv F7
o STR X NEW X
»
CALL SIGN2B
*
K
®
*
CAD PSZ
L1y 22
CALL SQR1
____kPY DNU .
MPY Fé
MPY Fé S
STR F1
CAD CNU
ADD l.
vVID F7
STR XL NEW XD L
*
CALL SIGN2C
CAD HZ20CT
SAM MCTION o i ~
LFR 44,HY2BSS RESTORE RETURN.
LER 5 HY2BSS+1
JLH EXE) EXIT
HYZ2BSS BSS 2
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-

NVERS] SFR 4,NV1BSS SAVE RETURN.
STR F2 : F2 = TEST CNU
CAM 0
CAM 1 ,CNARRY. M1 = CNARRY

LOM 4,COVAL
CSM 4.M4
N1A CAD F2

CAV 1,1,
1P N1B
ACM 0,1
IRA N1A
N18B SBM 0,183 ACCURACY CROSSOVER OCCURS AT ENT
JPM OsN1C:
CAD l. BEGIN APPROX. FUOR SMALL TABLE V2
sus F2
STR F3
CAD le.
ACD F2
viD F3
STR F2
rPY E3
MPY F3
NDV 5.
ADD F3
ADE 1
CALL - SQR1 4
IRA N1D
N1C ADM 0,183 2ND ORDER ITERATION FOR REST OF

SBM 0,900
JUM OsN1E
ADM 09900

CAD F2
STR F3
CAD 2.
CALL SCR1
rVPY F3
sus K
STN FO
CAD FC
TRA N1D

N1lE ADM 0,9G0

CAC MO-1.~

Civ 9C0O.

MPY K

STR ug

CADC CNARRY+MO—-1
MPY F1

MPY Fl
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STR F3
CAC SNARRY+MO-1
MPY DNARRY+MO-1
STR F2 F2 = SN(TI) = DN(I)
CAC TSTCNU
sus CNARRY+MO-1
NDV F2
STR FQ
MPY FQ
MPY F3
NDV F2
MPY 1C+3,2048
ARC FQ
ACD ug

N1D STR U
STR TESTU
CALL LOOKUP
CAC CNU
syB TSTCNU
STR DELCNUY
CAV 15,3,
suB ERROR
TIN N1X
cJz 4,EFPR3
CAD DELCNU
cCiv SKNU
Cly DNU
ADD V)
TRA N1D

N1X LFR 44NV1BSS
JLH 399 EXIT

NV1BSS 8SS 1

»
ASSIGN DELCNUL,DELSBC .

ERROR _ CEC 1.0E-12 -

NVERS2 SFR 49NV2BSS SAVE RETURN.
SFR 5.NV2BSS+1 SAVE _F5
SFR 6,NV2BSS+2 SAVE Fé6
SER T,NV2BSS+3 SAVE F7
STR F5 FS = TEST SN/1+CN
CAY SBYC+901 S
TP NZB IF SBYC IS IN SECOND QUADRANT.



128

CAM 0
___CAM 1,SBYC SBYC IS PRIME VALUED. L
N2C CAD 1,1,
_ CAV ES
TP N2G
ADM 0,1
TRA N2C
N26G CAM 2,M0
SBM 0,183
JPM 0,N2E
CAD FS BEGIN APPROX. FOR SMALL TABLE V!
STR F2
NPY F2
MPY F2
MPY F2
—._._.¥PY F2 .
NDV 10.
ADD E2
MPY 2.
TRA N2X
N2E ACM 0,183 2ND ORDER ITERATION FOR REST OF
ANM 0,8190
CRM 0,1
EOM 0,450
JUM 0,N2F
CAM 0,M2
CAD FS
MPY 2. -
SuUB 1.
CALL _ SQR1
suB 1.
STR F3
CAC 2.
CALL  SQR1
MPY F3
ADD K
TRAs  N2X
N2F CAM 0,M2 o
CAD M1-2
STR F2 7
CAV ES
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STN F3
__CAD MC-1. o
CIV 9CeC.
MPY K
STR uc
CAC 1.
ACD CNARRY+MO-1
STR FO
CAC 1.
SUB CNARRY+MO-1
CIV FC
STR F6
CAD CNARRY +MO-1 o
ACD 1.
VID DNARRY+MO-1
TRA N2A
N2B CAM 1,S8YC+901
CAM 0
N2D ACM 0,1
CAC 1,1,
CAV F5
TN N20
_ CALC M1-2 R,
STR F2.
_CAV £S5
STN F2
CAC MC-1. . -
LIV 9€0. .
NPY K
ADD K
) STR uge o
CAD 1. e
suB CNARRY-M0+901
STR FC
CAD 1. )
- ADC CNARRY-MO+901 e
C1v FO
STR Fé
cSB CNARRY-M0+901
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ACD 1.
__..vID DNARRY=M0+901 .
N2A STR F1
VID F3
STR __F3
MPY F3 -
. . MPY _F6
vPY F2 e
LIV F1
NDV 4.
____ADD F3
ADC uo
N2X ___STR v
STR TESTU - -
CALL __ LCOKUP
CAC CNU
. LADD le ) B
vID SNU — S
_ LAV 15,3,
SUB FS
STN DEL SBC
CAvV 15,3,
SUB __ERROR o
. _ 1IN N2XT )
CAD CNU B
20D 1.
MPY DELSBC ]
L1V DAY
ADD U s
' TRA N2X
NZXT  LFR 4)NV2BSS
__LER_ _ 5,NV2BSS+1 RESTARE F5 U
LFR 6,NV2BSS+2 RESTORE F6
LFR 7,NV2BS5S+3 RESTORE F7
. _JLH 3, EXIT e
#NV2BSS ESS 4
_LOOKUP. SER 4,LKPBSS _SAVE RETURN. I
CAM 0 MO = O
12p LKP6 TRANSFER JF TESTU .GE. 0
LKPLl__ ADD K4 TESTU .L. O _ ]
™ LKP1
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LKP2  SUB K
N LKP3
. _ADM 0yl .
TRA LKP2
LKP3  ADD K
LKP4  CRM 0,1
_JNM 0,LKPS JUMP IF MO IS ODD.
CIV SCALE
T STR F2 MO IS EVEN. i
~ TRA LKAUX TRANSFER TO LKAUX.
LKP5  SUB K MO IS ODD.
. _CIv SCALE
STN F2
_1RA LKAUX TRANSFER TO LKAUX.
LKP&  SUB K4 TESTU .GE. O 4
TP LKP6
LKP7 _ ADD K _
- __ACM 0,41 .
TIN LKP7
EQM 0.7 MASK MO FOR U 4Go O oos
SBM 0,3 AND SCT MO.
TRA LKP4
LKPBSS BSS 1
*
LKAUX SFR S, LKXBSS SAVE F5.
SIA 4 M4 = TABLE VALUE.
SBM 442 OK IF M4 .GE. 2
JNM  44LKX&4 JUMP IF M4 .L. 2
SBM 4,897 0K IF M4 .L. 898
JNM 4,LKX3 JUMP [F M4 IS IN RANGE.
CAM 4, SNARRY+894 M4 .GE. 898, END OF TABLE.
CAM 5,CNARRY+894 o T
CAM 63 DNARRY+894
) .. CSM™ 196 . e
LKX1  CAD 4yl, SET END OF TABLFS VALUES.
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_.CRM 0,1

_..MO 1S 0ODD.

__STIR SNARRY+900~-M7 o e e
CAD 591
STN CNARRY+909-M7
CAD 641,
- $TR _CNARRY+900-M7 R
cJu TsLKX1
CADC F2
cuB 8S4,
CAM 1 ELKAUX
LKx2 CALL __LACG.
TRA ALXLK
~LKX3__ _CAD F2
CAM 1,CWLAGE
TRA LKX2 TO LAG6.
LKX4 CAM 44 SNARRY+1 M4 L. 23 BEGINNING OF TABLES.
L AM 5 ¢ CNARRY+1 e
CAM 6, DNARRY+1
CSM Te6
LKXS __CAD _ 4,51, . SET BEGINNING OF TABLE VALUES.
STN SNARRY~-T7—-MT7
R 7.1 ) I 511, . e
STR CNARRY—-T7-M7
CAL 621y
STR DNARRY—-T7-M7
 CJdU . T4LKX5
_ CAD F2 -
ADC 6.
CAM 1, BLKAUX
TRA LKX2 TO LAGH.
#L KXBSS BSS 1 — e e
AUXLK JPM OsAXLK3 JUMP IF M) IS EVEN.

JNM 0,AXLK2 JUMP 1F MO = 3 = 7 =...
CAD CNU MO =1 =5 = oo
STN CNU
CAXLK1 LFR_ 4,LKPBSS ~ RESTORE RETURN. __
LFR 5+LKXBSS RESTORE FS
I | T - N T EXIT. . .

AXLK2 CAD SAU

MO = 3 = 7 =ees

STN SNU
TRA.  _AXLK1




AXLK3 _CRM 0,1 MO 1S EVEN.
JPM 0,AXLK1 JUMP TO EXIT IF M) = 0 =
CAD SNU MO =2 =6 = ...
STN SNU
CAD CNU
STN CNU
TRA AXLK] TRANSFER TO EXIT.
SIGNEA MPY X INS
1P SIGNEA+2 .
CAD XZERO
STN X1ERO
JLH 3y,
SIGNEB CAD XINS
MPY XDINS —
N SEBA
CAD X
MPY XINS
1P SEBBX
CAC X
SIN X
SEBBX JLH 34y EXIT.
SEBA  CAD K
C1v XZEROD
CIvV RPS2
CAV 1553,
SUR TZERO
STR PS]
JZM LCOPS, SEBC
CAV IBY4 FIRST LooOP.
SEBF TP SEBD
CAD X INS
MPY X
N SEBBX
SEBE  CAD X
STN X S _
TRA SEBBX
SEBD  CAD XINS ~ , .
MPY X
1p SEBBX
TRA SEBE
SEBC _ CAV 3. SECOND LOODP. o
TRA SEBF



SIGNEC CAD XINS o
MPY XDINS
N AUXE
CAD TZERO
JIM LCOPS,SECA
CAvV TBY4
SECE TN SECB
AUXE CAC XD
MPY XCINS
1P SECCX.
SECD CAD X0
STN XD
SECCX _JLH 34, EXIT. 3
SECB CAC XC
MPY XDINS
1ZN SECCX
TRA SECD
SECA LAV 3.
TRA SECE
SIGN1A EQUL SIGNEA .
SIGN1B VPY XINS
TP SIGN1B+2
CAD X
STN X e
JLH EXY) EXIT,. T
SIGN1C CAC XINS
MPY XD INS
1P AUX]
CAD TZERO
JIM LOOPS,S1A
CAvV TBY4 T
S1E N S18
AUX1 CAD XC -
vPY XDINS
1P S1CX
S10 CAC XD
STN XD o
_S1CX __JLH 359 o
S18B CAD XC
¥PY XCINS
TZIN S1CX N
TRA S1D T
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S1A CAV 3.
TRA S1E
SIGN2A MPY XC INS
TP SIGN2A+2
CAD XCZERO
SIN XCZERO
_JLH__ 344
SIGN2C MPY XCINS
N TP SIGN2C+2 _ _
CAC XD
STN XL
JLH 3y
SIGN2B_CAD ___XINS e
__MPY XCINS -
1P AUX2
CAD T1ERO
o JIM LCOPS,S2A B
. LAY ___ TBY4 e
S2E IN 528
AUX2  CAD X
MPY XINS o e
. 1P s2CX
s2D CAD X
STN X
S2CX __ JLH 3., EXIT. o
s28B CAC X
o M¥PY ___XINS _ ]
1IN S2CX
IRA S20
S2A CAV 3.
__IRA___S2E e
STXCAL CAD DELRAD
MPY DELPHI e
12 EFPR3
CAD AMJOR
suU8 RADFIN
_12P ____EFPR3
CAC DELRAD
ASC AMJOR ,
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LFR 5,SETUP
CAM 7.1
SFR 5,SETUP
__LER 6, COUNT
CAM 11
N SFR 6,COUNT i
CAC 1543,
TRA EFPRB
* CALL  RLCUM _
s [CECQL _ACUM,ECDUM,PHIDUM,RDUM e
RDUM  SFR 2,RDMBSS SAVE F2.
) SFR 3,RDMBSS+1 AND F3.
SFR 4 ,RDMBSS+2 SAVE RETURN.
SFR 5,RDMBSS+3 AND F5.
LFR 5,M3 M4 = ADUM,M5 = ECDUM,M6 = PHID
CAD M6 _
CIV 180.
CALL  cOSl i
MPY M5
STR F2
MPY F2
STR F2
_ ....CAD 1, -
SuB F2
CALL  SQR]
STR F3
CAD M5
MPY Fl
STR F2
CAD 1.
suB F2
CALL __ SQR1 o
_ Clv F3
MPY M4
STR M7
LFR 2+RDOMBSS
LFR 3,RDMBSS+1
LFR 4,RDMBSS+2 o
LFR 5,RDMBSS+3
JLH M2+1 EXIT.
RDMBSS BSS 4
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ASSIGN SCALE,RPSZ422,049Q6,Q9,Q12,XINP,XDINP,XINS,XDINS,PSI

ASSIGN AVRUC , RMRUC, AVGyRMGy PHIIN,RADIN,ROUT,RIN

ASSIGN XINyXDINyTZERD,XZERO,XDZERD; MOTION,T Xy XD,DELX,DELXD

ASSIGN AQ,CQ.BNoﬁﬁ,iESiU.l§iSBE,|§|CNU.U'UO'SNU.CNU.DNU,RADNEH

ASSIGN CUUNT:RUCRIN;LARGEGoF'SHALLG.RAD.PH(.XF:XDF.RADDLD.PHIDLD

ASSTGN DELRAD,RADFIN,PHINP,DELPHI ,ECLCEN, XMAX, SETUP

ASSIGN XPERMy XDPERM, AMJOUT, AMJIN, ECOUT,EC INy AMJOR

ASSIGN AVGR,RMSR,SIGMAR,AVGGyRMSG,STGMAG

READIN DECQL +XPERMy16,INREAD
INREAD CHR 30,4F15.0,2F10.0/6F10.0,F5.0,3D5+

PRTNTN DECQL , XPERM, 16 NPRINT
NPRINT CHR  48,8H1XPERM =1PE24.15//9H XDPERM =1PE24.15//9H AMJO

CHR  48,UT =1PE24.15//8H AMJIN =1PE24.15//8H ECOUT =1PEl

CHR  48,9.10//TH ECIN =1PE19.10//8H AMJOR =1PE19.10//9H

CHR  48,DELRAD =1PE19.10//9H RADFIN =1PE19.10//8H PHINP
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CHR  48,=2PE19.10//9H DELPHI =2PE19.13//8H ECCEN =1PELl9

CHR 484.10//TH XMAX =F10.2//19H FIXED POINT NUMBERDS//2
_CHR _ 48,0H NUMBER OF ORBITS ISD5//21H NUMBER OF SECTORS

CHR  5,1SD5% o o
"7 ASSIGN COVAL
CTOFF _DECQL ,COVAL,1,0FFCT ~ -
OFFCT CHR 3,05+
CTOFFP DECOL ,COVAL,1,0FFPCT_
GFFPCT CHR 24,/716H CUTOFF VALUE 1SD5#

SMOUT1 DECQL - ,AVGR,6,0UTSML y o
DUTSML CHR 48,//1TH AVERAGE RUCRIN =1PE14.6,15H RMS RUCRIN =

CHR 48y1PE14.6421H RUCRIN DEVIATION =1PEl4.6//14H A

"CHR "48,VERAGE G =1PE14.6,10H RMS G =1PEl4.6,16H 5 D

TTCHR T T 18,EVIATION =1PEl14. 6%

HEAD DECQL »++DAEH o
DAEH CHR 48y 1H1 Xy 3HM11, 11X, 6HRUCRINy 11 Xy 6HLARGEG,y 10X,y 1HF, 11




139

CHR 48 ,Xy 6HSMALLG ¢ 14X, 3HRADy BX, 3HPHI, 15Xy 2HXF s 14X o 3HXDF

CHR 10,+2X,1HQ/ /=

‘OUT " DECIL %096¥3,COUNT, 9, TUD
DECAL  3,SETUP,1, -
TUO — CHR  46,05,1P2E17.9,F11.5,1P2E17.9,F11.5,1P2ELT1.9,03/+

SKIP CECQL 2 95PIKS

PIKS CHR 593(/)»

*BUFFLl BSS 6 4 o o
#*SNARRY BSS 3C1

*BUFF2 BSS 6. . .
#CNARRY B8SS 9C1

«BUFF3 BSS &

#DNARRY BSS 9C1

»BUFF4  BSS 6 _ . -
«SBYC BSS 1702

_CWLAGH LCECQL  SNARRY»1sSNUs1
EECQ. CNARRY,1,CNU,y1
LECQ DNARRY» 1.DNU,
ELKAUX CECQL SNARRY+894,51,S5NU,1
CECQ CNARRY+894,1,CNU,1
CECQ DNARRY+894,1 ,DNU,
B A X L §NARRY‘6:1’SNU91
CECQ CNARRY=6,1,CNU,1
LECQ DNARRY=64,1:DNU,
IGNORE EQUS 4096
LOOPS _EQUM 2
RFAST EQUF 3
QFAST  EQUF 2

TBY4 CEC 1.5

K LEC 1.854074677301372

K4 CeC T.416298709205488

RINCR CEC = «55555555555555E~-03 e
Q CeC «43213918263772E-01

PSZz __ CEC 0317 e
PI CEC 3.141592653589793

EQCT  CCTOL 565,4343,7147
H10CT OCTQL 4,7C30,44701
H20CT CCTOQL _ ,,7030,4702
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PHIST CAD DELX SUBROUTIN TO CORRECT 'PHI'.
1P PHISTA , N o
12 PHISTSB 7
CAD 180,
ASC PHI
TRA PHISTX
PHISTA CAD DELXD
1P PHISTX
CAD 360.
ASC PHI
TRA PHISTX
PHISTB CAD DELXD
TP PHISTC
CAD 210,
STR PHI
TIRA PHISTX
PHISTC CAD 90.
STR PHI
PHISTX JLH 399 EXIT.
CXMAX SFR 4,CBSS SAVE RETURN.
CAM 1, PXMAX
CALL  PRINT
LFR - 4,CBSS
TRA STXCAL
PXMAX CECQL ¢X32yXMAXP
XMAXP CHR 48,1H17/724H w=es XMAX EXCEEDED ew#%//3H X=1PE24.
CHR 17,//4H XD=1PE24.15#
#CBSS  BSS 1
{ ]
%*
&*
%
[ ]

(18]
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C. Fortran program for the IBM=7094

Input parameters

NSTART: An integer (1,2,3, or 4) representing the quarter-period of p(t)
which initiates the motion.
MLTPLS: The number of integer multiples m of the basic mapping period.
PERS: The basic mapping period n.
VINGC: The numerical value of the period T of p(t).
PZERO: The numerical value of the magnitude Py ofvp(t).
XMAXK: The maximum value of X which a final coordinaté is allowed to attain.
XPERM: The X-coordinate of the point to be used as the origin of the polar
. coordinates.
XDPERM: The incoordinate of the point to be used as the origin of the polar
coordinates.,
ECCEN: The fixed eccentricity e, corresponding to the initial point in
phase~space being mapped.
AMJOR: The semi-major axis a, corresponding to the initial point in phase-
space being mapped.
PHIIN: The original angle 60 corresponding to the initial point in phase-
space being mapped.
PHIINC: An increment in 90 if a regular series of 60 values is desired.

PHIFIN: The final 90 in the desired series of 90 values (may equal PHIIN).

Qutput parameters

NCYCLE: The running counter for the number of multiples m of the basic
period n.

V(l): The running value of time t o



V(2):

V(3):
PHI:

RUERIN:

FMOSER 2

GMOSER:
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The mapped X-coordinate Xl (tl).,
The mapped X-coordinate ).(1 (tl)"

The mapped radius r, about (XPERM, XDPERM).

1
The mapped angle 91 about (XPERM, XDPERM).

The ratio of the mapped radius r, at the angle 91 to the radius

1
r, of a standard ellipse (specified by AMJOR and ECCEN) at the
same angle 6, . {This is called RUCRIN in the NICAP program. ]
Moser's 4@ function = (91-90)‘.

Moser's &r function = (rlw’ro .
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